
Effect Sizes for Experimenting Psychologists

Abstract This article describes three families of effect
size estimators and their use in situations of general
and specific interest to experimenting psychologists.
The situations discussed include both between- and
within-group (repeated measures) designs.  Also
described is the counternull statistic, which is useful in
preventing common errors of interpretation in null
hypothesis significance testing.  The emphasis is on
correlation (r-type) effect size indicators, but a wide
variety of difference-type and ratio-type effect size esti-
mators are also described.

Until quite recently in the history of experimental
psychology, when researchers spoke of “the results of
a study,” they almost invariably were referring to
whether they had been able to “reject the null hypothe-
sis,” that is, to whether the p values of their tests of sig-
nificance were .05 or less.  Spurred on by a spirited
debate over the failings and limitations of the
“accept/reject” rhetoric of the paradigm of null hypoth-
esis significance testing, the American Psychological
Association (APA) created a task force to review journal
practices and to propose guidelines for the reporting of
statistical results.  Among the ensuing recommenda-
tions were that effect sizes and interval estimates (e.g.,
confidence intervals) be reported for principal out-
comes (Wilkinson & Task Force on Statistical Inference,
1999).  The fifth edition of the Publication Manual of
the American Psychological Association (APA, 2001)
emphasizes the importance of reporting effect size indi-
cators for “one-degree-of-freedom effects – particularly
when these are the results that inform the discussion”
(p. 26).  Examples of such effects are those naturally
associated with focused statistical procedures, including
all t tests, F tests with numerator df = 1, z contrasts on
proportions, and 1-df χ2 tests.  The expectation is that
guidelines promulgated by the APA task force will be
absorbed into the mainstream of psychological experi-

mentation and reflected in statistical training practices.
Thus, it will be the degree of the relationship between
the independent and dependent variables, the effect
size (i.e., the magnitude of the research findings), that
will become the primary coin of the realm when psy-
chological experimenters speak of “the results of a
study.”  Ideally, there will also be an indication of the
accuracy or reliability of the estimated effect size,
which would be indexed by an interval estimate placed
around the effect size estimate.

The thrust of this article is the description of various
ways of estimating effect sizes in situations of general
and specific interest to experimenting psychologists.
The cases discussed include between- and within-
group (repeated-measures) designs, continuous and
categorical data, and an effect size for comparing effect
sizes.  Table 1 lists by family and subtype the effect
size estimators described in this article.  By and large,
we prefer the correlation (r-type) family of effect size
indices (Rosenthal, Rosnow, & Rubin, 2000).  However,
it seems natural to employ certain difference-type
indices (such as Hedges’s g and Cohen’s d) when the
original studies have compared two groups and the dif-
ference between means and within S (or σ) are avail-
able.  It is sometimes necessary to make a decision to
convert all the effect size indices to one particular
index (e.g., in meta-analytic work), usually to r or zr

for the correlation family, or to Cohen’s d or Hedges’s g
for the difference family.  In that situation, there are
reasons to view r-type indices as the more generally
useful effect size measures (Rosenthal, 2000).

Suppose the data came to us as rs.  We would not
want to convert rs to difference-type indices, as the
concept of a mean difference index makes little sense
in describing a linear relationship over a great many
values of the independent variable.  On the other hand,
given effect sizes that are reported as Hedges’s g or
Cohen’s d, for example, the r index makes perfectly
good sense in its point-biserial form (i.e., two levels of
the independent variable).  If the data were structured
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222 Rosnow and Rosenthal

in a 2 x 2 table of counts, then the phi form of the r
index would be suitable.  But suppose a hypothesis
called for five levels of arousal, and the experimenter
predicted better performance on the dependent mea-
sure in the middle levels of arousal than in the more
extreme levels, and the very best performance in the
midmost level of arousal.  The magnitude of an effect
associated with a curvilinear trend is quite naturally
indexed by r, but not so naturally by difference-type or
ratio-type indices.  To represent the predicted quadratic
trend, the experimenter could choose contrast weights
(λs) of -2, +1, +2, +1, -2.  The experimenter’s effect size
r would index the degree to which these λs accurately
predicted the actually obtained performance.  Still
another convenience of the r-type index is that it
requires no computational adjustment in going from
the two-sample or multisample case to the one-sample
case, whereas with Cohen’s d or Hedges’s g, the defini-
tion of the size of the study will change by a factor of 2
in going from a t test for two samples to a t test for one
sample.  Finally, the magnitude of the research findings
can be quite simply interpreted on the basis of r-type
indices (as illustrated later).

The r-type family includes the Pearson product-
moment correlation in any of its customary incarna-
tions, such as those discussed in this article.  These
include (a) the point-biserial correlation (rpb) when one
variable is continuous and one variable is dichotomous;
(b) the phi coefficient (φ or rφ) when both variables are
dichotomous; (c) other variants such as rcontrast, ralerting,

reffect size, rBESD, and rcounternull; (d) the Fisher z transfor-
mation of r (zr); and (e) squared indices of r and r-like
quantities such as r2, ω2, ε2, and η2.  One reason to
avoid the use of squared indices of effect size, howev-
er, is that they lose their directionality (i.e., is the treat-
ment helping or hurting, or is the correlation positive
or negative?), and thus are of little use in scientific
work for which information on directionality is essen-
tial.  Another problem is that the implications of
squared indices of effect size are likely to be miscon-
strued as being much less important than is often true.
A little further on, we will illustrate how r2 is suscepti-
ble to the expository problem that very small, but
sometimes quite meaningful, effects may seem to
essentially disappear.

The APA publication manual also recommends that
authors of research reports provide the exact probabili-
ties (p values) of their tests of significance (i.e., except
in tables where it would be cumbersome to do so).
Thus, it is useful to reiterate the general relationship
between the p value and the effect size (Cohen, 1965;
Rosenthal & Rosnow, 1991), which is given by

significance test = effect size x study size,

a relationship that is described in detail in the pages
that follow.  To anticipate, the larger the study in terms
of the total number (N) of units or observations, or the
larger the effect size, the larger will be the value of the
significance test and, therefore, the smaller (and more

TABLE 1
Three Families of Effect Size Estimators Discussed in This Article

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Subtype

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Family Raw Standardized Transformed
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Difference M1 - M2 (raw difference) Hedges’s g (2) probit d’ (10)

Cohen’s g (14) Cohen’s d (4) logit d’ (11)
Π (16) Glass’s ∆ (6) Cohen’s h (15)
d’, Risk Difference (RD) (21) BESD-based RD (24) Cohen’s q (18)

Correlation rφ (9) Fisher zr
requivalent (12)
rcontrast (26-30)
ralerting (31)
reffect size (32)
rBESD (34)
rcounternull (39)

Ratio Relative Risk (RR) (19) BESD-based RR (22)
Odds Ratio (OR) (20) BESD-based OR (23)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Note. Numbers in parentheses refer to equation numbers defining these estimators.  Fisher’s zr is the log transformation of r, that
is, loge [(1 + r )/(l - r)].
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coveted) the p value.  As sample sizes (ns) become
increasingly unequal, the significance test will become
less efficient.  Simple procedures and adjustments are
available for estimating the relative loss of power in
unequal-n designs, for estimating Hedge’s g or Cohen’s
d from t, and for converting Hedges’s g or Cohen’s d to
r when working with unequal ns (Rosenthal et al.,
2000; Rosnow, Rosenthal, & Rubin, 2000).  Of course, if
the size of effect is truly zero, increasing N will not pro-
duce a result that is any more significant than a smaller
N will produce (although effect sizes of exactly zero
are rarely encountered).

The Two-Sample Case

Perhaps the most commonly employed experimental
design is the two-sample case (e.g., an experimental
and a control condition), and suppose the researcher
were interested in t as a test of significance.  The
experimenter has a choice of equations that can be
written in the style of the general relationship between
effect size and study size (Rosenthal, 1991, 1994).  For
example,

(1)

where the effect size component is indicated as
Hedges’s g, which in turn is defined as

(2)

a ratio of the difference between two means divided by
the combined estimate of the standard deviation (e.g.,
Hedges & Olkin, 1985).  Equation 2 implies that one
way to maximize t would be to select an experimental
treatment that would drive M1 and M2 further apart.
For example, were we to investigate the effects of after-
school tutoring, we might use 5 hours or 2 hours of
tutoring per week, but certainly not 5 minutes or 2
minutes per week.  In other words, “maximizing t” (or
whatever statistical procedure is used) is simply part of
sensible experimental design.  As Equation 2 also
implies, another strategy would be to draw the units
from a relatively homogeneous population (i.e., in
characteristics that are presumably correlated with the
dependent variables) so as to minimize S.  Other rele-
vant experimental design features, including threats to
valid inferences about the existence and magnitude of
presumed causal generalizations, are described by
Shadish, Cook, and Campbell (2002).

In fact, any test of significance can be obtained by
one or more definitions of effect size multiplied by one
or more definitions of study size.  For instance, another
way to think about t in the style of the relationship
between effect size and study size is

(3)

where the effect size component is now indicated as
Cohen’s d.  This popular effect size index can be esti-
mated by

(4)

where the difference between independent means is
divided by the pooled population standard deviation
(Rosenthal & Rosnow, 1991), and

(5)

In sum, both Hedges’s g and Cohen’s d represent
the effect size in standard-score units (i.e., z scores).
However, Cohen’s d uses N for the denominator of the
estimated variance to obtain the standard deviation,
whereas Hedges’s g uses N - 1, that is, the pooled with-
in-sample unbiased estimate of the population variance
to obtain the standard deviation.  Also listed in Table 1
is another standardized difference index, Glass’s ∆
(Glass, McGaw, & Smith, 1981), which is defined as

(6)

where Scontrol is like the S in the denominator of
Hedges’s g, but is computed only for the control group.
Like Hedge’s g, Glass’s ∆ is an inferential measure,
whereas Cohen’s d is descriptive of a population of
scores.

Yet another way of thinking about the relationship
between effect size and study size is reflected in the
following identity:

(7)

where, in the two-group case with one dichotomous
and one continuous variable, r would be the Pearson
point-biserial correlation (rpb) and df = N - 2.

When dichotomously scored independent and
dependent variables are employed, still another way of
representing the relationship between the effect size
and study size is
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(8)

where χ2 is based on a 2 x 2 table of independent fre-
quencies (counts), φ2 is the squared Pearson product-
moment correlation between membership in the row
category (scored 1 or 0) and membership in the col-
umn category (scored 1 or 0), and N is the total number
of counts in all four cells.  Rearrangement of Equation
8 defines the effect size estimator as

(9)

that is, the Pearson product-moment r when indepen-
dent and dependent variables are both dichotomous.

Another difference-type index is the raw difference
between population proportions, called the Risk
Difference (RD) in biomedical research, similar to what
Fleiss (1994) termed d’.  Still another option is Cohen’s
h, the difference between arcsin transformed popula-
tion proportions.  We will have more to say about RD
and h shortly, but other relevant difference-type indices
are the probit and logit transformations of proportions,
which are used to index the difference between inde-
pendent categorical variables, assuming there are no
refined metric scales for the outcome variable but a
makeshift dichotomy is feasible (Glass, McGaw, &
Smith, 1981).  As examples, Glass et al. (1981) men-
tioned “dropping out versus persisting in school” and
“remaining sober versus resuming drinking” (p. 136).
The probit d’ is defined as

(10)

that is, the difference between standard normal deviate
transformed proportions (p1 and p2) of two popula-
tions.  Equation 10 is predicated on the assumption that
experimental and control group scores are distributed
normally, and that it is possible to constitute an under-
lying metric in which a dichotomous cutoff point is
presumed.  The logit d’ is defined as

(11)

or the difference between logit transformed population
proportions; this index is predicated on the assumption
of skewness in an expected direction.  For detailed dis-
cussion of the probit and logit transformations, see
Glass et al. (1981).

Another way to measure differences requires no
special formulas or adjustments.  Suppose the depen-
dent variable were the daily number of cigarettes
smoked by experimental and control subjects.  The raw

difference between M1 and M2 (where M is the mean
number of cigarettes in each condition) is meaningful
in and of itself.  Another intrinsically meaningful vari-
able would be absences from work.  Say an experi-
menter is interested in comparing a method of voca-
tional rehabilitation against a control, and the experi-
menter notes the days that employees were reported as
absent from work.  Finding, for instance, that workers
in the control condition averaged five more absences
per month than those in the rehabilitation treatment
becomes fraught with practical significance.

Before leaving the two-sample case, we should
mention that another common situation occurs when
experimenters who use very small samples report non-
parametric statistics (such as the Mann-Whitney U) and
accurate p values but not effect sizes.  Rosenthal and
Rubin (in press) described how to estimate the effect
size by simply identifying (in a standard table, for
example) the value of t that corresponds to the accu-
rate p with df = N - 2, and substituting in the following
equation:

(12)

where r is equivalent to the sample point-biserial corre-
lation between the treatment indicator and an exactly
normally distributed outcome in a two-treatment exper-
iment with N/2 units in each group and the obtained p
value.

The One-Sample Case

There are situations, however, in which there is only
a single sample in the experiment, perhaps with each
subject exposed to two different experimental condi-
tions.  For instance, an experimenter is interested in
teachers’ favourableness of nonverbal behaviour
toward children for whom the teachers hold more ver-
sus less favourable expectations, or in the health out-
comes to the same patients of a new drug versus a
placebo taken at different points in time.  A simple test
of significance of the effect of teachers’ expectations on
their nonverbal behaviour, or of patients’ reactions to
the two different treatments, would be the t for corre-
lated observations.  Equation 12 can be used to obtain
the r associated with the one-sample t-test, because the
r index in the two-sample case is identical to that in the
one-sample case (Rosenthal, 1994).  In a similar way,
we can obtain Cohen’s d from the following:

(13)

where t is based on the one-sample case.
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Dichotomous Data
When the one-sample data are dichotomous rather

than continuous, three possible effect size indices are
Cohen’s g, Cohen’s h, and a newer index, Π.  Cohen’s
g is simply

(14)

the raw difference between an observed proportion
and .50.  For example, the magnitude of an electoral
victory could be given directly by Cohen’s g.  If 60% of
the electorate voted for the winner, then Cohen’s g =
.60 - .50 = .10.  Such an effect size might be regarded
as enormous in the case of an election result, but might
be viewed as far less noteworthy as the result of an
experimental intervention to boost scores of a class of
high school students on a true-false test on Canadian or
American history.

Cohen’s h, noted previously in connection with the
two-sample case, is defined as

(15)

or the difference between arcsin transformed popula-
tion proportions.  Suppose that participants were asked
to identify four expressions of emotions (e.g., joy, dis-
appointment, anger, and fear) in a series of posed pho-
tographs.  On each trial, they are presented with a pho-
tograph, and the instruction is to choose one of four
responses (resembling a multiple-choice test in which
one of four answers is always correct and its position
assigned at random).  Guessing should yield an accura-
cy rate of .25, and say the actual observed performance
is .75.  To transform each proportion (p), we calculate
2 arcsin p, which yields 2 arcsin .75 for the actual 
proportion and 2 arcsin .25 for the expected propor-
tion, and Cohen’s h is 2.09 - 1.05 = 1.04.  The reason
for the arcsin transformation is to make the hs compa-
rable, since differences between raw proportions are
not all comparable (e.g., with respect to power).  Thus,
a difference between proportions of .95 and .90 would
yield a Cohen’s h of .19, whereas the difference
between proportions of .55 and .50 yields a Cohen’s h
of only .10 (Cohen, 1988).

The one-sample effect size index Π is expressed as
the proportion of correct guesses if there had been
only two choices from which to select.  When there are
more than two choices, the Π index converts the pro-
portion of hits to the proportion of hits made if there
had been only two equally likely choices, where

(16)

with phits = raw proportion of hits, and k = number of
alternative choices available.  The standard error of Π
is

(17)

This index would be especially valuable in evaluating
performance on a multiple-choice dependent measure
in which the number of alternatives varied from item to
item.  The Π index allows us to summarize the overall
performance so we can compare performance on tests
made up of varying numbers of alternatives per item.
Further details can be found in Rosenthal and Rubin
(1989, 1991) and Schaffer (1991).

Effect Sizes for Comparing Effect Sizes

Suppose an experimenter hypothesized that two
cognitive performance measures will be more highly
correlated in preschoolers than in fifth-graders.
Cohen’s q allows us to assess the degree to which the
hypothesis is supported by simply calculating the dif-
ference between Fisher zr-transformed rs obtained from
the preschoolers and fifth-graders, that is,

(18)

Tables for Fisher zr transformations are generally avail-
able (e.g., Rosenthal & Rosnow, 1991; Rosnow &
Rosenthal, 2002a).  This transformation makes equal
differences between the zrs equally detectable, whereas
equal differences between the rs would not be equally
detectable.  Significance tests among rs are also more
accurate when the Fisher zr transformation is used
(Alexander, Scozzaro, & Borodkin, 1989).

It should be noted, however, that evaluating
whether two effect size rs are significantly different will
typically require substantially more sampling units than
testing whether an obtained effect size r is statistically
significant (Cohen, 1988; Rosenthal & Rosnow, 1991).
Say we wanted to achieve a power level of .80 in trying
to detect at p = .05 (two-tailed) a difference of .10
between r1 and r2; we would need about 1,600 units
(n) in each sample.  On the other hand, if we wanted
to test whether an r of .10 was different from zero at p
= .05 (two-tailed) with power of .80, we would need a
total N of about 800 units.

Cohen’s q can also be used in the one-sample case,
such as when an obtained effect size r is to be com-
pared to a theoretical value of r.  All that is required is
to take the difference between zr associated with the
observed sample and zr associated with the theoretical
value of r (Cohen, 1988).
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The Interpretation of Effect Sizes

Despite growing awareness of the importance of
estimating effect sizes, there remains a problem in how
to interpret popular effect size estimators (Cooper,
1981).  Rosenthal and Rubin (1982) found that neither
experienced behavioural researchers nor experienced
statisticians had a good intuitive feel for the meaning of
common effect size estimators, and this was particularly
true for such squared indices as r2, η2, ω2, ε2.  To pro-
vide a real-world perspective on this problem, we will
consider some important biomedical findings, starting
with the 1954 Salk vaccine trial – called “the biggest
public health experiment ever” (Meier, 1988, p. 3).

The Salk Trial in the Context of Other Effect Sizes
The purpose of this famous biomedical experiment

was to evaluate the effects of inoculating young chil-
dren with the Salk poliomyelitis vaccine versus a place-
bo consisting of a simple salt solution (Francis, Korns,
Voight, Boisen, Hemphill, Napier, & Tolchinsky, 1955).
There were serious problems with the study, however,
which were discussed by Brownlee (1955) in a promi-
nent journal.  Originally, it had been proposed that
only second-grade children receive the vaccine and
that first-grade and third-grade children serve as an
“observed control” group.  Once the folly of this pro-
posal was realized, a second plan proposed that all the
children be combined, with half of them blindly receiv-
ing a placebo solution.  But, as Brownlee caustically
commented, “only 41 per cent of the trial was rescued
and the remaining 59 per cent blundered along its stu-
pid and futile path” (p. 1007).  Nonetheless, he con-
cluded that there was “convincing evidence for the
effectiveness of the vaccine” (Brownlee, 1955, p. 1010).

And what was the magnitude of the effect that

Brownlee found so convincing?  Psychologists have
grown accustomed to referring to rs of .10, .30, and .50
as small, moderate, and large, respectively.  For exam-
ple, Smith, Glass, and Miller (1980) found out meta-
analytically that the average effect size of psychothera-
py outcome studies was r = .39 (a moderate-to-large
effect).  Might we expect that the magnitude of the
effect in the Salk vaccine trial was perhaps much larger
than .39?  To find the answer, we compute a 1-df chi-
square on the raw data in Table 2 (i.e., the data that
Brownlee found so persuasive) and then use Equation
9 (with N = 401,974) to obtain the effect size.  We find
that χ2 = 45.25, p = 1.7-11 and the effect size r = .011,
and thus the corresponding r2 = .000 or, to four decimal
places, .0001.

Most experimenters would be surprised to learn that
an effective biomedical intervention could be associat-
ed with an r as small as .011 and an r2 of .0001.  But rs
smaller than .10 are not at all unusual in biomedical
research.  In 1987, at a specially called meeting, it was
decided to end, prematurely, a randomized double-
blind experimental study of the effects of aspirin on
reducing heart attacks (Steering Committee of the
Physicians Health Study Research Group, 1988).  The
reason for the unusual termination was that it had
become clear that aspirin prevented heart attacks (and
death from heart attacks), and thus it would have been
unethical to continue to give half of the approximately
22,000 physician research subjects a placebo.  The
effect size index rφ was .034 (an r2 of .0011).  Table 3
lists effect sizes obtained in a convenience sample of
23 studies, including those previously summarized by
Rosenthal (2000).  Nine of these studies employed
dependent variables of paralytic polio, convulsions,
AIDS events, alcohol problems, heart attacks, and
death, with associated r-type effect sizes of less than
.10.  One result of our consideration of these biomed-
ical effect size estimates is to make us more sanguine
about the magnitude and importance of research find-
ings in the behavioural and social sciences (Rosenthal,
1995, 2000).  Although the effect size is mathematically
determined by characteristics of the study design and
results, the interpretation of its real-life implications
would, of course, depend upon the context (e.g.,
Rosnow & Georgoudi, 1986) and the nature of the
dependent variable.

The Binomial Effect Size Display
Returning to Table 2, the bottom subtable recasts the

r that we estimated from the chi-square on the Salk
vaccine data as a Binomial Effect Size Display (BESD).
This standardized display gives us an idea of the practi-
cal value of any effect indexed by a correlation coeffi-
cient.  The BESD shows the r-type effect size to be a

TABLE 2
Vaccination Status and Diagnostic Class of 401,974
Children in 1954 Salk Vaccine Trials

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Condition Paralytic polio Paralytic polio 

present absent––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1. Raw counts in four conditions

Vaccination 33 200,712
Placebo 115 201,114

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2. Percentages in four conditions

Vaccination 0.016 99.984
Placebo 0.057 99.943

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
3. Binomial effect size display of r = .011

Vaccination 49.5 50.5
Placebo 50.5 49.5
Total 100.0 100.0

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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TABLE 3
Effect Sizes of Various Independent Variables

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Independent variable Dependent variable r r2

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Salk vaccinea Paralytic polio .01 .00

Aspirinb Heart attacks .03 .00

Beta carotenec Death .03 .00

Streptokinased Death .03 .00

Propranolole Death .04 .00

Magnesiumf Convulsions .07 .00

Vietnam veteran statusg Alcohol problems .07 .00

Garlich Death .09 .01

Indinaviri Serious AIDs events .09 .01

Testosteronej Adult delinquency .12 .01

Compulsory hospitalization
versus treatment choicek Alcohol problems .13 .02

Cyclosporinel Death .15 .02

Low dose warfarinm Blood clots .15 .02

Ganzfeld perceptionn Accuracy .16 .03

Cisplatin and Vinblastineo Death .18 .03

AZT for neonatesp HIV infection .21 .04

Cholesterol-lowering regimenq Coronary status .22 .05

AZTr Death .23 .05

Treatment choice versus AAs Alcohol problems .27 .07

Psychotherapyt Improvement .39 .15

Compulsory hospitalization
versus AAu Alcohol problems .40 .16

Anxietyv Rumormonger .48 .23

Progesteronew SIV infection .65 .42

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aFrancis, Jr. et al. (1955); bSteering Committee of the Physicians Health Study Research Group (1988); cAlpha-Tocopherol, Beta Carotene
Cancer Prevention Study Group (1994); dGISSI (1986); eKolata (1981); fForeman (1995); gCenters for Disease Control Vietnam Experience 
Study (1988); hGoldfinger (1991); iKnox (1997); jDabbs and Morris (1990); kCromie (1991); lCanadian Multicentre Transplant Study Group
(1983); mGrady (2003); nChandler (1993); oCromie (1990); pAltman (1994); qRoberts (1987); rBarnes (1986); sCromie (1991); tSmith, Glass, 
and Miller (1980); uCromie (1991); vRosnow (1991);  wContraceptive trials set for a link to AIDS risk (1996).

CJEP 57.3  9/2/03  2:31 PM  Page 227



228 Rosnow and Rosenthal

simple difference in outcome rates between the experi-
mental and control groups in a 2 x 2 table with rows
and columns always totaling 100 (Rosenthal & Rubin,
1982).  Given that the success rate is higher in the
treatment group than in the control, the BESD is
obtained from any r-type effect size by computing the
treatment condition success rate as 100(.50 + r/2) and
the control condition success rate as 100(.50 - r/2).
Thus, an r of .011 in the Salk trial yields a vaccination
success rate (i.e., paralytic polio absent) of 100(.50 +
.005) = 50.5, and a placebo success rate of 100(.50 -
.005) = 49.5.  The difference between these rates divid-
ed by 100 is .01, the effect size indexed by r rounded
to two decimal places

Table 4 illustrates the BESD for four different effect
sizes, starting with the aspirin study mentioned above,
in which the effect size index rφ was .034 for heart
attack.  The aspirin success rate was therefore 100(.50
+ .017) = 51.7, and the placebo success rate, 100(.50 -
.017) = 48.3.  Experimental psychologists are not used
to thinking of rs as small as .034 (aspirin study) or .011
(Salk vaccine study) as implying effect sizes of any
practical importance.  But when we think of an r of
.034 as reflecting a 3.4% decrease in heart attacks, or an
r of .011 as reflecting a 1.1% decrease in paralytic
polio, these rs do not appear to be quite so “small.”
The second BESD shown in Table 4 refers to a nonex-
perimental study of 4,462 Army veterans of the Vietnam
War era (1965-1971).  The correlation between having

served in Vietnam (as opposed to serving elsewhere)
and subsequent alcohol abuse or dependence was r =
.07 (Centers for Disease Control, 1988).  In other
words, it is equivalent to the difference between the
problem rates of 53.5 and 46.5 per 100.  The third dis-
play of Table 4 shows the BESD for the results of a
recent clinical trial of low doses of warfarin on the pre-
vention of blood clots in 508 high-risk patients at 52
hospitals in the United States, Canada, and Switzerland
(Grady, 2003), where r = .152 (an r2 of .023).  This is
another example of a biomedical study with results that
were considered so dramatic as to lead to its premature
termination on the ethical grounds that it would be
improper to continue to administer a placebo to the
control group patients.  The bottom display of Table 4
reflects Smith et al.’s (1980) meta-analytic finding of r =
.39 for the effect size of psychotherapy (i.e., substan-
tially greater than the effects of a good many break-
through biomedical interventions).

Relative Risk
We turn now to three popular effect size estimators

in biomedical research, beginning with relative risk
(RR).  With reference to the cells labeled A, B, C, D in
Table 5 (Rosenthal, 2000), relative risk is defined as

(19)

that is, the ratio of the proportion of the control
patients at risk to the proportion of treated patients at
risk.  Applied to the Salk vaccine trial (Table 2), but
with cells arranged as shown in Table 5, the relative
risk is (115/201,229)/(33/200,745) = 3.48.

TABLE 4
Other Examples of Binomial Effect Size Displays

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Aspirin’s effect on prevention of heart attack (r = .034)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Condition Heart attack No heart attack
Aspirin 48.3 51.7
Placebo 51.7 48.3

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Vietnam service and alcohol problems (r = .07)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Vietnam veteran Problem No problem
Yes 53.5 46.5
No 46.5 53.5

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Low doses of warfarin on prevention of blood clots (r = .152)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Condition Blood clots No blood clots
Warfarin 42.4 57.6
Placebo 57.6 42.4

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Benefits of psychotherapy (r = .39)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Condition Less benefit Greater benefit
Psychotherapy 30.5 69.5
Control 69.5 30.5
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TABLE 5
Three Hypothetical Examples of Four Effect Size Estimates

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Die Live Relative Odds Risk

Control   A B risk ratio difference rφ
Treatment C D (Eq. 19) (Eq. 20) (Eq. 21) (Eq. 9)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Study 1

Die Live
Control 10 990 10.00 10.09 .01 .06
Treatment 1 999
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Study 2

Die Live
Control 10 10 10.00 19.00 .45 .50
Treatment 1 19
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Study 3

Die Live
Control 10 0 10.00 .90 .90
Treatment 1 9
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

8
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A limitation of this effect size estimate can be seen
in Table 5.  We ask readers to examine the three study
outcomes closely and to ask themselves the following
question: “If I had to be in the control condition, would
it matter to me whether I was in Study 1, Study 2, or
Study 3?”  We think most people would rather have
been in Study 1 than Study 2.  We also think that virtu-
ally no one would prefer to be a member of the con-
trol group in Study 3.  Yet, despite the very important
phenomenological differences among these three stud-
ies, Table 5 shows that all three relative risks are identi-
cal: 10.00.  That feature may be a serious limitation to
the value and informativeness of the relative risk index.

The Odds Ratio
With A, B, C, D cells defined in Table 5, the odds

ratio (OR) is

(20)

that is, the ratio of the not-surviving control patients to
the surviving control patients divided by the ratio of
the not-surviving treated patients to the surviving treat-
ed patients.  Applied to the Salk vaccine trial (Table 2),
with the arrangement of the cells conforming to the
template in Table 5, the odds ratio is
(115/201,114)/(33/200,712) = 3.48.

Notice in Table 5 that the odds ratio behaves more
as expected than does the relative risk.  That is, the OR
increases with our phenomenological discomfort as we
go from the results of Study 1 to Study 2 to Study 3.
But the high odds ratio for Study 1 seems alarmist.
Suppose the data were as shown in Results A of Table
6 (Rosenthal, 2000), which indicates an even smaller
proportion of patients at risk; the odds ratio is still 10,
which is an even more alarmist result.  The odds ratio
for Study 3 in Table 5 is also unattractive; but because
all the controls die, perhaps we could exonerate the
infinite odds ratio.  However, very different phenome-
nological results yield an identical odds ratio.  If the
data resembled Results B of Table 6 (Rosenthal, 2000),
we would again have an infinite odds ratio, definitely
an alarmist result.  In this case, even the problematic
relative risk index would yield a phenomenologically
more realistic result of 1.00.

The Risk Difference
With cells again labeled as shown in Table 5, the

risk difference (RD) is defined as

(21)

the difference between the proportion of the control

patients at risk and the proportion of the treated
patients at risk.  Applied to the Salk vaccine results
(Table 2), the risk difference is (115/201,229) -
(33/200,745) = .0004, or somewhat smaller than the
effect size index rφ previously calculated to be .011.

The last column of Table 5 shows the Pearson prod-
uct-moment r between independent variable of treat-
ment (scored 0, 1) and dependent variable of outcome
(scored 0, 1).  Comparing risk differences with r in
Table 5 (and elsewhere) shows that RD is never unrea-
sonably far from the value of r.  For that reason, the
RD index may be the one least likely to be quite mis-
leading under special circumstances.  Thus, if we had
to choose among RR, OR, and RD, we would select RD

as our all-purpose index among these three.  But even
here we feel we can do better.

Standardizing the Three Risk Indices
In other work, we have proposed a simple adjust-

ment that standardizes the RR, OR, and RD indices
(Rosenthal et al., 2000).  We compute the r between
treatment and outcome, and then display r in a BESD as
described above.  Table 7 shows these BESD-based
results for the three studies of Table 5.  The Ns in the
tables of counts of Table 5 varied considerably (2,000,
to 40, to 20), but the corresponding BESD-based indices
of Table 7 all show the standard margins of 100, which
is a design feature of the BESD.  The calculation of our
new effect size indices is straightforward.  We compute
the relative risk, odds ratio, and risk difference on our
BESD tables to obtain standardized (BESD-based) rela-
tive risk, odds ratio, and risk difference.

With cells of the 2 x 2 table labeled A, C, C, A from
upper left to lower right (as shown in Table 7), the cal-

TABLE 6
Further Illustrations of Extreme Outcomes

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Results A

Die Live Totals
Control 10 999,990 106

Treated 1 999,999 106

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Totals 11 1,999,989 2(106)

Results B
Die Live Totals

Control 1,000,000 0 106

Treated 999,999 1 106

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Totals 1,999,999 1 2(106)

Note. In Results A, the risk ratio (RR) = 10.00, the odds ratio (OR)
= 10.00, the risk difference (RD) = .000009, χ2

(1) = 7.36, and rφ =
.0019.  In Results B, the RR = 1.00, OR = infinity, RD = .000001,
χ2

(1) = 1.00, and rφ = .00071.
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culation is further simplified.  The BESD standardized
risk ratio is calculated as

(22)

To apply Equation 22 to the Salk vaccine BESD, where
the values of cells A and C are 50.5 and 49.5, respec-
tively, the BESD-based RR = 50.5/49.5 = 1.02.  The odds
ratio standardized is calculated as

(23)

which, applied to the Salk vaccine BESD, yields BESD-
based OR = (50.5/49.5)2 = 1.04  Finally, the standard-
ized risk difference, which is now actually equivalent
to rφ, is calculated as

(24)

and applied to the Salk vaccine BESD, yields BESD-
based RD = (50.5 - 49.5)/100 = .01.

Table 7 compares these standardized indices using
the outcomes of Table 5.  We see the BESD-based RR in
Table 7 increasing, as it should, in going from Study 1
to Study 3.  The BESD-based OR in Table 7 also increas-
es from Study 1 to Study 3, but without the alarmist
value for Study 1 and the infinite value for Study 3. (A
standardized odds ratio could go to infinity only if rφ
were exactly 1.00, an unlikely event in behavioural or
biomedical research.)  The BESD-based RD is shown in
Table 7 to be identical to the effect size index rφ, which

is an attractive feature emphasizing the interpretability
of r-type indices as exhibited in a BESD.

The Multiple-Sample Case

We turn now to designs with more than two inde-
pendent groups.  Suppose an experimenter who is
interested in object-tracking hypothesizes that the error
rate will increase linearly as a function of the complexi-
ty of background noise.  Based on the four-group
experimental design and raw scores in Table 8, the
experimenter reports only that the overall F(3,16) =
54.17, with p considerably smaller than .05.  The prob-
lem is that the experimenter specifically predicted a lin-
ear increment in error rate progressing from low to
extreme noise condition, but the omnibus F is oblivious
to that prediction.  The same F will result if the order-
ing of the four groups were reversed, or indeed for any
other arrangement of these four groups.  To address
the experimenter’s prediction, we need to compute a
linear contrast.

The contrast weights (λs) we select can take on any
convenient numerical value as long as Σλ = 0.  We will
choose single-digit λs of -3, -1, +1, +3, and substitute in
the following equation:

(25)

where M = group mean, S 2 = the usual MSerror from a
between-subjects ANOVA, n = number of units (e.g.,
subjects) in group, and λ = contrast weight.  We find

and one-tailed p = 5.4-10 .  Squaring the contrast t gives
us F(1,16) = 157.50, p = 1.1-9.  We now have four com-

TABLE 7
Standardized Outcomes of Table 5

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Die Live BESD- BESD- BESD-

Control A C based RR based OR based RD (r)
Treatment C A (Eq. 22) (Eq. 23) (Eqs. 24 & 9)
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Study 1

Die Live
Control 53 47 1.13 1.27 .06
Treatment 47 53
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Study 2

Die Live
Control 75 25 3.00 9.00 .50
Treatment 25 75
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Study 3

Die Live
Control 95 5 19.00 361.00 .90
Treatment 5 95
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TABLE 8
Number of Tracking Errors in Four Independent Groups, With
Subjects in Each Group Exposed to a Particular Level of
Complexity of Background Noise

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Level of complexity of background noise
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Low Moderate High Extreme
0 1 5 7
1 2 4 8
2 3 6 6
1 3 6 7
2 2 5 8

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
M = 1.20 2.20 5.20 7.20
S2 = .70 .70 .70 .70––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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plementary ways of thinking about r-type effect sizes:
the contrast r, alerting r, effect size r, and BESD r
(Rosenthal et al., 2000).

The Contrast r
The contrast r is a partial correlation between indi-

vidual sampling unit scores on the dependent variable
(Y) and the predicted mean score (represented by λ,
the contrast weight) of the group to which they belong,
with other between-group variation (i.e., noncontrast
variation, NC) removed.  The contrast r can thus be
written as rcontrast or rYλ•NC.  It is the simplest effect size
to calculate, and when all we have are minimal ingredi-
ents (as in meta-analytic work), it is sometimes the only
one that can be estimated from the published results.
For example, the contrast r can be conveniently esti-
mated from focused tests of significance (i.e., F with
numerator df = 1, all t tests, 1-df χ2, and all z tests) by
any of the following equations:

(26)

(27)

(28)

(29)

and in the two-sample case, the equal-n r can be
obtained from the following:

(30)

Notice that Equation 27 is similar to Equation 12,
and Equation 28 to Equation 9.  The reason is that
Equations 12 and 9 are actually both contrast correla-
tions.  But because there can be no noncontrast varia-
tion in the two-sample case, rcontrast = reffect size in two-
group designs.  For the example that we have been
discussing, applying Equation 26 or 27 yields rcontrast =
.95.

The Alerting r
The alerting r is the Pearson product-moment corre-

lation between group (or condition) means and con-

trast weights, and thus can be written as ralerting or rMλ.
We call it the alerting r because it can signal overall
trends of interest and when squared, alerts us to the
proportion of between-condition sum of squares
accounted for by the particular contrast.  If the leftover
(noncontrast) between-condition variability is minimal,
it tells us the contrast r is a close approximation of the
effect size r.  Using a handheld calculator that com-
putes rs, it is easy to obtain the alerting r.  In this case,
with linear lambda weights of -3, -1, +1, +3 and group
means of 1.2, 2.2, 5.2, 7.2, the correlation between λs
and means is .9845 (and the squared alerting r is .969).

Table 9 shows the ANOVA on the data of Table 8,
including the linear contrast F of 157.50.  As we expect-
ed, the contrast SS (110.25) consumes 97% of the
between-condition SS (113.75).  Suppose all we knew
were the group means and the omnibus F – which is
not unusual in meta-analytic work.  We can compute a
contrast F in three easy steps.  First, we correlate the
contrast weights (λs) and the group means, and then
square this value.  Second, we multiply the omnibus F

by its numerator df, which gives the maximum possible
contrast F.  Finally, we multiply the results of steps 1
and 2: (.969)(54.17)(3) = contrast F(1,16) = 157.5.

We can also use the following equation to obtain the
alerting r:

(31)

with terms defined in Table 9.  Applying Equation 31,
we find

The Effect Size r
The effect size r (written as reffect size or rYλ) is the

simple (unpartialed) correlation between the contrast
weights associated with membership in a group or con-

Table 9
Summary ANOVA for Results in Table 8, Including the Linear
Contrast

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Source SS df MS F p
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Between 113.75 (3) 37.92 54.17 1.3-8

Contrast 110.25 1 110.25 157.50 1.1-9

Noncontrast 3.50 2 1.75 2.50 .11
Within error 11.20 16 .70
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Note. For the linear contrast F, the reffect size = .94, rcontrast = .95,
ralerting = .98, and rBESD = .88.  As the overall F and noncontrast F
are omnibus tests (i.e., numerator df > 1), effect sizes would not
be reported for them.
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dition and scores on the dependent variable.  As it
involves no partialing of other between-condition
effects out of the error term, the reffect size is never larger
than the rcontrast, and is usually smaller than rcontrast

(sometimes dramatically so).  The reffect size can be com-
puted from

(32)

Applied to the results in Table 9, we find

Just as we expected from the squared alerting r, the
rcontrast was a good approximation of the reffect size in
this example.

The BESD r
The binomial effect size r tells us the reffect size that

we would expect to see in a two-group replication
with the same total N, and the lower-scoring group set
at -1σλ and the upper-scoring group at +1σλ, where

(33)

and k = number of conditions in the contrast.  Space
limitations prevent us from describing this estimator in
detail, but further discussions are available elsewhere
(Rosenthal et al., 2000; Rosnow et al., 2000).  The rBESD

can be computed from

(34)

with the restriction that if Fnoncontrast is less than 1.00, it
is entered in Equation 34 as 1.00.  The purpose of this
restriction is to formalize the assumption that the non-
contrast variation is noise, and forces rBESD to be less
than (or at most equal to) reffect size.  We can also com-
pute Fnoncontrast from

(35)

Applying Equation 35, we find

and substituting in Equation 34:

In the two-group case, rcontrast, reffect size, and rBESD

will be identical.  With k > 2, it is possible for rcontrast,
ralerting, reffect size, and rBESD to be identical, but typically
reffect size will be larger than rBESD, and rcontrast will be
larger than reffect size.  For other equivalences among
effect size estimates, see Rosenthal (1991, 1994) and
Rosenthal and Rosnow (1991).

The Case of Multiple Repeated Measures

We turn next to another common design in experi-
mental psychology, a factorial arrangement in which
one or more factors involve repeated measures and the
primary prediction of interest involves those repeated
measures.1 Table 10 illustrates this case by showing the
raw scores of N = 9 children at three age levels who

TABLE 10
Four Repeated Measures with Associated Contrast (L) Scores for
Three Age Groups
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Sessions Contrast (L)
––––––––––––––––––––––––––––––––––––––––––––––––––––          

1 2 3 4 scoresa

––––––––––––––––––––––––––––––––––––––––––––––––––––          ––––––––––––––––
Age 8

Child 1 3 2 3 3 1
Child 2 1 2 1 2 2
Child 3 4 5 5 5 3

––––––––––––––––––––––––––––––––––––––––––––––––––––          ––––––––––––––––
M = 2.67 3 3 3.33 2
S2 = 1.00

Age 10
Child 4 4 5 4 6 5
Child 5 5 6 5 6 2
Child 6 5 7 6 7 5

––––––––––––––––––––––––––––––––––––––––––––––––––––          ––––––––––––––––
M = 4.67 6 5 6.33 4
S2 = 3.00

Age 12
Child 7 6 6 7 8 7
Child 8 5 6 6 8 9
Child 9 7 8 8 9 6

––––––––––––––––––––––––––––––––––––––––––––––––––––          ––––––––––––––––
M = 6 6.67 7 8.33 7.33
S2 = 2.33

––––––––––––––––––––––––––––––––––––––––––––––––––––          ––––––––––––––––
Grand M = 4.44 5.22 5 6 4.44
Mean S 2 = 2.11
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aThese are the L scores, which for each child is a linear trend L
score, as the experimenter had predicted that children’s perfor-
mance would show a linear improvement with practice in going
from the first to the fourth session (contrast weights of -3, -1, +1,
+3).  To illustrate, the linear trend L score for Child 4 is computed
as L = Σ(YiλI) = (4)(-3) + (5)(-1) +(4)(+1) + (6)(+3) = 5.
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were each measured on a 1-9 scale of performance
accuracy on four equally spaced occasions.  The exper-
imenter’s hypothesis was that the children would
improve in a linear fashion from the first to the fourth
session and that this linear trend would appear more
clearly as the children’s ages increased from 8 to 10 to
12.  The experimenter is aware that another researcher
implied somewhat different predictions, not a general
linear increase.  Instead, that other researcher’s predic-
tion was that children would require two sessions
before a noticeable improvement would occur and that
this pattern would be increasingly evident in older
rather than younger children.

Table 11 shows the first experimenter’s overall
ANOVA and omnibus Fs on the results of Table 10.  This
analysis tells us “where the action is” in terms of the
relative magnitude of the mean squares; it gives
omnibus Fs and p values for the age effect, the sessions
effect, and the Sessions x Age interaction.  However, it
tells us nothing of any specific interest, as it neither
addresses this nor the other researcher’s predictions.
All the main effect for age tells us is that “ages matter,”
but not how they matter.  The sessions effect tells us
that “sessions matter,” but not how they matter.  The
Sessions x Age interaction effect tells us that “session
effects vary with age,” but not how they vary.

Once again, we need to structure the focused ques-
tions in the form of contrasts that will yield inter-
pretable answers with respect to both effect sizes and
significance levels.  When employing contrasts with

repeated measures, it is necessary to compute for each
sampling unit (each child in this example) an L score
(or contrast score) that indexes for each unit the degree
to which it reflects the accuracy of the particular pre-
diction (Rosenthal & Rosnow, 1985; Rosenthal et al.
2000).  The final column of Table 10 shows the L scores
for each child, defined as

(36)

The experimenter’s first prediction was that, on the
whole, children would show a linear improvement
over sessions.  We can represent this prediction by con-
trast weights (λs) of -3, -1, +1, +3.  All we need do is
compute a one-sample t-test on the grand mean L

score:

(37)

where L– is the mean of the L scores, N is the number of
children in the study, and S2

L is the variance of the L

scores collected within each of the three age groups
and aggregated.  For the data of Table 10, we find

and p = .000047.  The effect size rcontrast estimate is
computed from Equation 27 as

The experimenter’s more interesting question was
the degree to which increasing age of the children
would be associated with increasing linearity of
improvement over the course of the four sessions.
Table 12 shows the L scores obtained by children of

TABLE 11
Preliminary Analysis of Variance of the Data of Table 10

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Source SS df MS F p
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Between 130.50 (8)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Age 98.00 2 49.00 9.04 .015
Children nested in age 32.50 6 5.42

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Within 18.50 (27)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Sessions 11.22 3 3.74 19.24 7.6-6

Sessions x age 3.78 6 0.63 3.24 .024
Sessions x children 3.50 18 0.19

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Total 149.00
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note. Because all of these Fs are omnibus tests (i.e., numerator df
> 1), rather than focused tests (or contrasts), effect size estimates
are not reported in this table.

TABLE 12
Contrast Scores for Linear Trend (-3, -1, +1, +3) Over Sessions for
Children of Three Age Groups

Age
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

8 10 12
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 5 7
2 2 9
3 5 6

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
M 2.00 4.00 7.33
S2 1.00 3.00 2.33
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

__________________________________________________________

1 If there were no repeated measures and we were primarily
interested in the predicted pattern of condition means, the pro-
cedure described in the preceding section could be used.  For
example, if the design were a 2 x 2 ANOVA, we could address
the overall prediction by means of a 1 x 4 contrast and correla-
tional indices along the lines illustrated in the previous exam-
ple (Rosnow & Rosenthal, 1995).
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the three age groups.  Applying Equation 25, with S2

estimated by aggregating the S 2 values in Table 12 (i.e.,
S 2

aggregated = 2.11), we find

p = .0021, rcontrast = .88, ralerting = .99, and reffect size =
.87.

The other researcher’s general prediction was that
children would require two sessions before a notice-
able improvement would occur.  To address this pre-
diction, we choose contrast weights of -1, -1, +1, +1.
Correlating these weights with the -3, -1, +1, +3 linear
weights, we find r = .89, which tells us the predictions,
although different, are highly correlated.  Table 13
shows the L scores for each of the nine children based
on the prediction with weights of -1, -1, +1, +1.
Applying Equation 37, we find

and p = .00022.  From Equation 29, the effect size 
rcontrast estimate is .94.

A more interesting question was whether this pat-
tern would be shown increasingly more by older than
by younger children.  Applying Equation 25, we find

and p = .0027, rcontrast = .87, ralerting = .87, and reffect size

= .77.  In sum, the prediction of Table 13 (with contrast
weights of -1, -1, +1, +1) was supported almost as well
as was the prediction of Table 12 (with contrast
weights of -3, -1, +1, +3).  If we wanted a more direct

and more precise comparison of these two hypotheses,
we could do so by procedures described elsewhere
(Rosenthal et al., 2000, pp. 165-169; Rosnow &
Rosenthal, 2002b).

Minimizing Errors in Thinking About Effect Sizes

At the beginning of this article, we alluded to discus-
sions about null hypothesis significance testing (NHST)
and its discontents.  We will conclude by mentioning a
recently introduced statistic, the counternull value of
the effect size (Rosenthal & Rubin, 1994; Rosnow &
Rosenthal, 1996), which may help to eliminate two
common errors associated with NHST.  The first error
occurs when the researcher mistakenly infers that fail-
ure to reject the null implies an effect size of zero; the
second error occurs when the researcher mistakenly
equates rejection of a null hypothesis on the basis of a
significance test with having demonstrated a scientifi-
cally important effect.  The counternull value of the
effect size refers to the nonnull magnitude of the effect
size that is supported by exactly the same amount of
evidence as is the null value of the effect size.  That is,
if the counternull value were taken as the null hypoth-
esis, the resulting p value would be the same as the
obtained p value for the actual null hypothesis.

For effect size estimates that are based on symmetric
distributions (e.g., d, g, ∆, zr), no matter what the mag-
nitude of the effect size (ES) is under the null, the
counternull value is

(38)

Because the effect size expected under the null is
zero in many of its applications, the value of the coun-
ternull is often simply twice the obtained effect size, or
2(ESobtained).  For asymmetric distributions (e.g., the r
between two continuous variables), it is best to trans-
form the effect size to a symmetric distribution, then to
calculate the counternull on the symmetric scale, and
finally to transform back to obtain the counternull on
the original scale (Rosenthal et al., 2000).  The follow-
ing equation can be used to estimate the counternull
statistic of the obtained r:

(39)

where r is simply the estimated magnitude of the
obtained effect.

Suppose an experimenter calculated an obtained
effect size r of .10, with null defined as r = .00, and
(using Equation 7 or looking in a table of significance
levels) found p = .20.  Applying Equation 39, the

TABLE 13
Contrast Scores for Alternative Prediction (-1, -1, +1, +1) for
Improvement Over Sessions

Age
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

8 10 12
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 1 3
0 0 3
1 1 2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
M 0.67 0.67 2.67
S2 0.33 0.33 0.33
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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experimenter finds rcounternull = .20 (rounded), which
tells us that the counternull value of r = .20 is “as like-
ly” as the null value of r = .00.  Rather than concluding
that “nothing happened” because the obtained p was
greater than the chosen level of .05, the experimenter
instead accepts the conclusion that an effect size of r =
.20 is just as tenable as an effect size of zero.  In the
same way, the counternull value of 2d or 2zr would be
just as defensible a conclusion as concluding d = 0 or
zr = 0.

The counternull value is conceptually related to con-
fidence intervals (which provide limits for such fixed
probabilities as, for example, 95% and 99%) but
involves the null hypothesis and the obtained p value.
As Cohen, with his customary wisdom, pointed out, the
behavioural and medical sciences would be far more
advanced had researchers routinely reported not just p
values, but effect size estimates with confidence inter-
vals as well (Cohen, 1990, 1994).

Portions of this article draw on some of our earlier writ-
ing in Rosenthal (2000); Rosenthal and Rosnow (1991);
Rosenthal, Rosnow, and Rubin (2000); Rosnow and
Rosenthal (1989, 1996); and Rosnow, Rosenthal, and Rubin
(2000).  Eric K. Foster (2003) has developed free software
for Microsoft Windows and the HP49G programmable cal-
culator for many of the procedures described in this article
and in our earlier writing noted above
(http://www.netaxs.com/~efoster).  Correspondence con-
cerning this article may be addressed to Ralph L. Rosnow,
177 Biddulph Road, Radnor, PA 19087 USA (E-mail: ros-
now@temple.edu).
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Le présent article décrit trois familles d’estimateurs
d’importance de l’effet et leur utilisation dans des 
situations d’intérêt général et particulier pour les psy-
chologues en recherche. Les cas décrits sont notam-
ment les suivants : les conceptions (mesures répétées)
entre groupes et intrinsèques au groupe, les données
continues et catégoriques et une importance d’effet qui
permet de comparer l’importance des effets. Nous
illustrons aussi des cas précis du rapport général entre
la valeur p et l’importance de l’effet qui est obtenu par
le test de signification = importance de l’effet x enver-
gure de l’étude. Même si l’accent est mis sur la corréla-
tion (type r) de la famille d’importance de l’effet 
(p. ex., le point bisérial r quand une variable est con-
tinue et qu’une variable est dichotomique; le coeffi-
cient phi quand les deux variables sont dichotomiques;
les autres variantes comme le contraste, l’avertisse-
ment, l’importance de l’effet, le BESD et le contre-nul r;
et la transformation z de r ) de Fisher, nous abordons
le type de différence (p. ex., d, g, h et q de Cohen; le g
de Hedges; le probit et le logit d '; π; et la différence
du risque) ainsi que les estimateurs de l’importance de
l’effet du type proportionnel (p. ex., le risque relatif et
les odds-ratio).

Malgré la sensibilisation grandissante à l’importance
de rapporter l’importance des effets et leurs intervalles
de confiance, il reste un problème quant à la façon
d’interpréter les estimateurs populaires d’importance
de l’effet. Ainsi, nous présentons une perspective tirée
du monde réel de ce problème en décrivant la « plus
grande expérience de tous les temps en santé
publique » (soit l’essai du vaccin Salt en 1954) et en
plaçant l’importance de l’effet en contexte en résumant
l’importance des effets dans vingt-deux autres études.
Nous illustrons aussi les limites de trois estimateurs
populaires d’importance de l’effet utilisés en recherche
biomédicale (soit, le risque relatif, l’odds-ratio et la dif-

férence du risque) et nous montrons comment en stan-
dardisant ces indices de risque par la méthode 
d’ajustement de la présentation binominale de l’impor-
tance de l’effet binomial effect-size display (BESD) qui
produira une différence du risque à BESD qui est iden-
tique à l’indice d’importance de l’effet phi, ce qui par
conséquent met l’accent sur la possibilité d’interpréter
les indices de type r comme montré dans une BESD. La
BESD montre l’effet de type r comme une simple dif-
férence des taux du résultat entre les groupes expéri-
mentaux et témoins dans un tableau 2 x 2 avec des
rangées et des colonnes qui totalisent toujours 100.

Lorsque des contrastes 1 x k sont utilisés dans des
conceptions avec des conditions k > 2 conditions, les
estimateurs de types r recommandés sont entre autres
les suivants : a) le contraste r (la corrélation partielle
entre les scores de la variable dépendante et le score
moyen prévu avec d’autres variantes entre groupes
enlevées); b) l’avertissement r (la corrélation simple
entre les conditions moyennes et les pondérations de
contraste; c) l’importance de l’effet r (la corrélation
simple entre les scores de la variante dépendante et les
pondérations de contraste); et d) la BESD r (l’impor-
tance de l’effet auquel on pourrait s’attendre dans une
réplication de deux groupes, compte tenu de certaines
spécifications décrites dans le présent article). L’article
conclut avec une brève description de la valeur contre-
nulle de l’importance de l’effet qui renvoie à l’ampleur
du non nul appuyée sur la même quantité de preuves
que pour la valeur nulle de l’importance de l’effet. La
valeur contre-nulle qui est liée d’un point de vue con-
ceptuel aux intervalles de confiance (mais qui est
fondée sur la valeur p obtenue plutôt que sur une
probabilité fixe) est particulièrement utile lorsque la
valeur p obtenue est plus grande que 0,05 (c.-à-d. non
« signifiante ») mais l’importance de l’effet est une cer-
taine valeur non nulle.
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