
§§2.3-2.4: Problem Solving,2.3-2.4: Problem Solving,
DocumentationDocumentation

15 Sep 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

journals in folder

devo

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 22

Review of 2.2Review of 2.2

 Components of a baby Modula-2 program

 Modules

 Reserved words

 Library tools (what are some we know already?)

 Identifiers (what are some legit examples?)

 Strings, quoting, newlines

 Structure of a program module (railroad diagram)

● MODULE, IMPORT, BEGIN, END.

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 33

What's on for today (2.3-2.4)What's on for today (2.3-2.4)

 Steps to problem solving: WADES in more detail

 Analyze the problem: write, ask appropriate, rewrite

 Plan and revise a solution

 Data tables and I/O

 Pseudocode

 Implement in Modula-2 code

 Compile, link, and run (several times)

 Check output against specifications

 Documentation

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 44

Steps to solving a problemSteps to solving a problem

 Steps are an expansion of WADES:

 Analyze the problem

 Plan a solution

 Write down your data tables and I/O

 Refine your solution (several times)

 Execute your plan (code) and evaluate the results

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 55

Analyze the problemAnalyze the problem

 Step 1: Write the problem out

● “Write a program that prints out a user-
specified number of hash marks (#).”

 Step 2: Ask whether a computer is appropriate

● Other ways to solve the problem?

 Step 3: Rewrite the problem in your own words

● Given: number of hash marks to print
● To do: print hash marks
● Result: a string of hash marks, e.g., #######
● Formula: none needed

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 66

Plan and refine a solutionPlan and refine a solution

 Step 4: Re-use previous work where possible

● Our program has input and output, so we will
use the STextIO and SWholeIO libraries.

 Step 5: Break the problem into smaller steps

● Input: read in desired number of hash marks
● Computation: none
● Output: print out hash marks

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 77

Further refinementsFurther refinements

 Second refinement:
● Input:

 Ask user for desired number of hash marks
 Input response and assign to a cardinal variable

● Computation:

 Initialize a cardinal counter to zero
● Output:

 While the counter is less than the desired number of
hash marks:

● Print a hash mark
● Increment the counter

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 88

Data tables and I/OData tables and I/O

 Step 6: List all variables and imports (data table)

● Variables: NumberOfHashes, counter: cardinals
● Imports:

 From STextIO: WriteString, WriteLn
 From SWholeIO: ReadCard

 Step 7: List required input (precondition) and
expected output (postcondition)

● Input: A cardinal number ≥ 0, e.g. 6
● Output: A string of hashes, e.g. “######”

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 99

Refining the solutionRefining the solution

 Step 8: Pseudocode

● Print “How many hashes do you want printed?”
● Read user input into NumberOfHashes
● counter <---- 0
● While (counter < NumberOfHashes)

 Print “#”
 counter <----- counter + 1

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 1010

Write the Modula-2 codeWrite the Modula-2 code

 Step 9: Modula-2 code (syntax matters here)

● MODULE HashMarks;

● FROM STextIO IMPORT

 WriteString, WriteLn;
● FROM SWholeIO IMPORT

 ReadCard;
● VAR

 NumberOfHashes, counter: CARDINAL;

 (continued next page)

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 1111

Modula-2 code, cont.Modula-2 code, cont.

● BEGIN

 WriteString (“How many hashes do you want? ”);
 ReadCard (NumberOfHashes);
 counter := 0;
 WHILE counter < NumberOfHashes

● DO
● WriteString (“#”);
● counter := counter + 1;

● END;
 WriteLn;

● END Hashmarks.

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 1212

Execution and evaluationExecution and evaluation

 Step 10: Compile, link, run

● First run:
 How many hashes do you want? 4
 ####

● Second run:

 How many hashes do you want? 0
 (no output)

 Step 11: Check against specifications

● Does program print the right number of
hashes? No one-off errors?

● What about weird input: 0, -1, 120, 5.3, abc?

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 1313

DocumentationDocumentation

 Document your thinking at every step,
even the ideas that didn't work!

● Programmer's diary: log of everything

 External documentation: outside the program
● User manual:

 What user input is required

 What the user should expect the program to output

 No details about program internals

 Internal documentation: within the program
● Descriptive variable/module names

● Comments in the code

● Online help for the user

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 1414

Examples of internal documentationExamples of internal documentation

 Good variable name: NumberOfHashes

● Bad variable name: x, num, i

 Comments: (* in Modula-2 *)

● (* loop NumberOfHashes times *)
● WHILE counter < NumberOfHashes

 DO
● WriteString (“#”); (* print just one # *)
● counter := counter + 1;

 END;
 Online help:

● “Enter 'h' for online help.”

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 1515

Review of today (2.3-2.4)Review of today (2.3-2.4)

 Analyze the problem: write, ask appropriate, rewrite

 Plan and revise a solution:

● Reuse modules, break into smaller steps

 Data tables and I/O:

● variables/imports, pre/postcondition

 Pseudocode

 Implement in Modula-2 code

 Compile, link, and run (several times)

 Check output against specifications

 Documentation

15 Sep 200515 Sep 2005CMPT 14x: 2.3-2.4CMPT 14x: 2.3-2.4 1616

TODO itemsTODO items

 Homework due tomorrow (Fri):

● §1.11 # 35

 Reading: through §2.5 for Fri

 Quiz ch2 next Mon

 Lab 1 due next MTW in lab section

● Short writeup ok

