
§4.8-5.2: Recursion, Enumerations§4.8-5.2: Recursion, Enumerations

3 Oct 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

1) journals in folder
2) quiz ch4 today

devo

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 22

AnnouncementsAnnouncements

 Midterm ch1-4 this Friday in-class
● Includes material in text not covered in class!

● Expect questions similar to quizzes

● Bring blank sheets of paper

● Closed book/notes/laptop/phone/calc

● Review on Thu

 Thanksgiving next Mon: no M lab section

 CMPT140 final W-Th 26-27Oct in-class

 CMPT145 final W 14Dec 2-4pm Neu13

 Student Alumni dinners

Student Alumni DinnersStudent Alumni Dinners
Are you tired of Caf food?Are you tired of Caf food?

What’s the ‘real’ world like after What’s the ‘real’ world like after
graduation?graduation?

You are invited for a You are invited for a FREEFREE, casual dinner , casual dinner
at a Trinity Alumna's home to talk about at a Trinity Alumna's home to talk about

your area of interest!your area of interest!
These dinners take place on various nightsThese dinners take place on various nights

 throughout the year. throughout the year.
If interested please sign up now!If interested please sign up now!

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 44

Review of 4.3-4.7Review of 4.3-4.7

 Value vs. variable parameters: a.k.a.

● call-by-value vs. call-by-reference

 Pre-/post-conditions (predicates): two choices:

● Specify in documentation/comments
● Code to check input for validity

 Function procedures

 Standard helper functions

 Naming conventions

 Debugging tips

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 55

Quiz ch4 Quiz ch4 (3 questions, 20 marks, 10 minutes)(3 questions, 20 marks, 10 minutes)

 Describe in your own words the difference between
value parameters and variable parameters.

 Write a Modula-2 procedure Swap that swaps the values
of its two REAL parameters
● e.g., if x=1.0 and y=2.0, then after invoking Swap (x, y), we

should have x=2.0 and y=1.0.

 Write a function procedure SortPair that swaps the values
of its two REAL parameters iff the first is greater than the
second. The function should return TRUE iff a swap has
been performed.
● e.g. If x=1.0 and y=2.0, then

 SortPair (x, y) should not change the values of x or y,
and should return FALSE

 SortPair (y, x) should result in y=1.0, x=2.0, and return TRUE

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 66

Quiz ch4 answers (#1-2)Quiz ch4 answers (#1-2)

 Value vs. variable parameter:

● Value param: “read-only”, value from actual parameter
is copied into formal parameter at invocation

● Variable param: “writeable”, formal parameter is an
alias to actual parameter

 PROCEDURE Swap (VAR x, y : REAL);

VAR

temp : REAL;

BEGIN

temp := x;

x := y;

y := temp;

END Swap;

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 77

Quiz ch4 answers (#3)Quiz ch4 answers (#3)

 PROCEDURE SortPair (VAR x, y : REAL) : BOOLEAN;

VAR

temp : REAL;

BEGIN

IF x > y

THEN
temp := x;
x := y;
y := temp;
RETURN TRUE;

END;
RETURN FALSE;

END SortPair;

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 88

What's on for today (4.8-5.2)What's on for today (4.8-5.2)

 Recursion

● Tail recursion, using loops instead

 Enumeration types

● Ordinal types

 Subrange types

● Expression, assignment compatibility

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 99

RecursionRecursion

 A recursive procedure invokes itself:

● Factorial(n) = n! = 1 * 2 * 3 * ... * (n-1) * n
PROCEDURE Factorial (n : CARDINAL) : CARDINAL;

BEGIN

IF n <= 1
THEN

RETURN 1;
ELSE

RETURN n * Factorial (n - 1);
END;

END Factorial;

 Note that Factorial() invokes itself with n-1, not n

● Otherwise it'd end up in an infinite recursion!

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1010

Uses of recursionUses of recursion

 Often a solution can be implemented using
iteration (loops) instead of recursion:

● Tail recursion: when self-invocation happens
only at the end of the procedure

● Recursion uses more CPU resources than
iteration (procedure stack)

 But some problems are more clearly, elegantly
solved using recursion

● Fibonacci sequence; Towers of Hanoi example
in the text

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1111

User-defined typesUser-defined types

 Modula-2 allows us to define our own types in addition to
the built-in types we've been using so far:
● Atomic types

 Scalar types
● Real types (REAL, LONGREAL)
● Ordinal types

● Whole number types (INTEGER, CARDINAL)
● Enumerations (5.2.1)
● Subranges (5.2.2)

● Structured (aggregate) types

 Arrays (5.3)
● Strings (5.3.1)

 Sets (9.2-9.6)

 Records (9.7-9.12)

today

Wed

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1212

Enumeration typesEnumeration types

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
today : DayName;

BEGIN
today := Mon;

 We could have used CARDINALs instead
(and indeed the underlying implementation does)

● But the logical semantic of today's type is a
DayName type, not a CARDINAL

 Can be thought of as Sun=0, Mon=1, Tue=2, ...

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1313

Working with enumeration typesWorking with enumeration types

 INC and DEC work on enumerated types:

today := Mon;

INC (today);

● But cannot increment/decrement past bounds:
today := Sat;

INC (today); (* run-time error *)

 Cannot mix with cardinal types:

today := Mon + 1; (* expression incompatible *)

 Comparison does work:

IF today < Thu

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1414

Enumerations are ordinal typesEnumerations are ordinal types

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
today : DayName;
todayNum : CARDINAL;

BEGIN
today := VAL (DayName, 2); (* Tue *)
todayNum := ORD (today); (* 2 *)
today := VAL (DayName, 7); (* range error *)

 CHAR is also an ordinal type

 BOOLEAN can be thought of as an ordinal type:

TYPE BOOLEAN = (FALSE, TRUE);

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1515

SubrangesSubranges

 Another kind of user-defined type is a subrange:

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
WeekdayName = [Mon .. Fri];
WeekdayName = DayName [Mon .. Fri]; (* alt. form *)

BEGIN
weekday := Sat; (* error *)
num := ORD (Mon); (* 1, not 0 *)
weekday := VAL (WeekdayName, 1) (* Mon, not Tue *)

● Ordinal number of a subrange is same as host
type

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1616

Subrange compatibilitySubrange compatibility

 Subranges are expression compatible if
the base types match exactly

 Subranges are assignment compatible if
the base types are assignment compatible

TYPE

TenCards = CARDINAL [1 .. 10];
TenInts = INTEGER [1 .. 10];
FiveCards = CARDINAL [1.. 5];

BEGIN

tenInt := tenCard; (* ok *)
tenInt := tenCard + fiveCard; (* ok *)
tenInt := tenCard + tenInt; (* not expr. comp. *)

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1717

Review of today (4.8-5.2)Review of today (4.8-5.2)

 Recursion

● Tail recursion, using loops instead

 Enumeration types

● Ordinal types

 Subrange types

● Expression, assignment compatibility

3 Oct 20053 Oct 2005CMPT 14x: 4.8-5.2CMPT 14x: 4.8-5.2 1818

TODO itemsTODO items

 Lab3 due tonight/tomorrow/Wed:

● §4.11 # (33 / 34 / 41) (choose one)
● Full writeup!

 Homework: §4.11 #19 due Wed (next class)

 Midterm ch1-4: this Friday!

● (same day as MATH123 calc midterm)
 Reading: through §5.3 for Wed

