
§5.1-5.3: Enumerations, Arrays§5.1-5.3: Enumerations, Arrays

5 Oct 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

1) journals in folder
2) hw due today

devo



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 22

AnnouncementsAnnouncements

 Midterm ch1-4 this Friday in-class
● Includes material in text not covered in class!

● Expect questions similar to quizzes

● Bring blank sheets of paper

● Closed book/notes/laptop/phone/calc

● Review on Thu

 Thanksgiving next Mon: no M lab section

 CMPT140 final W-Th 26-27Oct in-class

 CMPT145 final W 14Dec 2-4pm Neu13



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 33

User-defined typesUser-defined types

 Modula-2 allows us to define our own types in addition to 
the built-in types we've been using so far:
● Atomic types

 Scalar types
● Real types (REAL, LONGREAL)
● Ordinal types

● Whole number types (INTEGER, CARDINAL)
● Enumerations (5.2.1)
● Subranges (5.2.2)

● Structured (aggregate) types

 Arrays (5.3)
● Strings (5.3.1)

 Sets (9.2-9.6)

 Records (9.7-9.12)

today

Wed



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 44

Enumeration typesEnumeration types

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
today : DayName;

BEGIN
today := Mon;

 We could have used CARDINALs instead
(and indeed the underlying implementation does)

● But the logical semantic of today's type is a 
DayName type, not a CARDINAL

 Can be thought of as Sun=0, Mon=1, Tue=2, ...



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 55

Working with enumeration typesWorking with enumeration types

 INC and DEC work on enumerated types:

today := Mon;

INC (today);

● But cannot increment/decrement past bounds:
today := Sat;

INC (today); (* run-time error *)

 Cannot mix with cardinal types:

today := Mon + 1; (* expression incompatible *)

 Comparison does work:

IF today < Thu



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 66

Enumerations are ordinal typesEnumerations are ordinal types

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
today : DayName;

todayNum : CARDINAL;

BEGIN
today := VAL (DayName, 2); (* Tue *)

todayNum := ORD (today); (* 2 *)
today := VAL (DayName, 7); (* range error *)

 CHAR is also an ordinal type

 BOOLEAN can be thought of as an ordinal type:

TYPE BOOLEAN = (FALSE, TRUE);



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 77

SubrangesSubranges

 Another kind of user-defined type is a subrange:

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
WeekdayName = [Mon .. Fri];

WeekdayName = DayName [Mon .. Fri]; (* alt. form *)

BEGIN
weekday := Sat; (* error *)
num := ORD (Mon); (* 1, not 0 *)

weekday := VAL (WeekdayName, 1) (* Mon, not Tue *)

● Ordinal number of a subrange is same as host 
type



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 88

Subrange compatibilitySubrange compatibility

 Subranges are expression compatible if
the base types match exactly

 Subranges are assignment compatible if 
the base types are assignment compatible

TYPE

TenCards = CARDINAL [1 .. 10];

TenInts = INTEGER [1 .. 10];
FiveCards = CARDINAL [1.. 5];

BEGIN

tenInt := tenCard; (* ok *)

tenInt := tenCard + fiveCard; (* ok *)
tenInt := tenCard + tenInt; (* not expr. comp. *)



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 99

Comparisons work for scalar typesComparisons work for scalar types

 Scalar types include real types and all ordinal 
types

 Ordinal types include whole number types and all 
enumerations and subranges

 Examples:
 IF (today >= Monday) AND (today <= Friday)
 WHILE (ch >= 'A') AND (ch <= 'Z')



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 1010

User-defined typesUser-defined types

 Modula-2 allows us to define our own types in addition to 
the built-in types we've been using so far:
● Atomic types

 Scalar types
● Real types (REAL, LONGREAL)
● Ordinal types

● Whole number types (INTEGER, CARDINAL)
● Enumerations (5.2.1)
● Subranges (5.2.2)

● Structured (aggregate) types

 Arrays (5.3)
● Strings (5.3.1)

 Sets (9.2-9.6)

 Records (9.7-9.12)

today

Wed



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 1111

ArraysArrays

 An array is a collection of objects with the same 
type that is indexed by an ordinal type

 Array types can be declared using TYPE:

TYPE
CharArray = ARRAY [0 .. 20] OF CHAR;

Weekdayname = [Mon .. Fri];
WageArray = ARRAY WeekdayName OF REAL;

VAR
myName, yourName : CharArray;

nelliesWages : WageArray;

BEGIN
myName [0] := 'S';
nelliesWages [Tue] := 25.75;

25.75

nelliesWages:

Mon Tue Wed Thu Fri



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 1212

Using arraysUsing arrays

 We can access individual entries in an array:
 myName [1] := yourName [0];

 We cannot index an array out of bounds:
 myName [2000] := 'a'; (* out of range *)
 nelliesWages [Sat] := 10.0; (* out of range *)

 We can assign whole arrays of the same type:
 myName := yourName;

 We can't do comparisons on whole arrays:
 IF myName = yourName (* invalid *)
 IF myName < yourName (* invalid *)



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 1313

Anonymous array typesAnonymous array types

 We can declare a variable to be an array without explicitly 
declaring an array type:

 VAR

myWages : ARRAY Weekdayname OF REAL;

 This type is called an anonymous array type

 In M2, anonymous types are not compatible with named 
types (recall nelliesWages is a WageArray):

 myWages := nelliesWages (* type mismatch *)

 Functions also may not use an anonymous type as a 
return type:
● PROCEDURE GetWages() : WageArray; (* ok *)

● PROCEDURE GetWages() : ARRAY WeekdayName of REAL; (* not *)



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 1414

StringsStrings

 In M2, strings are just arrays of CHARs!
 TYPE

String = ARRAY [0 .. 10] OF CHAR;
LongString = ARRAY [0 .. 80] OF CHAR;

Paragraph = ARRAY [1 .. 10] OF LongString;

 VAR
string1, string2 : String;

ch : CHAR;
para : Paragraph;

 Note that our String types have fixed length

  String and LongString are different types

● Hence not assignment/expression compatible



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 1515

Using strings Using strings (more detail in ch7)(more detail in ch7)

 We can use arrays of CHAR wherever we can use 
literal strings:

 string1 := “Hello!”;
 string2 := string1;
 WriteString (string1);

 CHARs can be assigned to strings:
 string1 := ch;

 We can input strings from the user:
 ReadString (string1);

 But be careful of exceeding the string length!
 string1 := “Hello World!”; (* too long! *)



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 1616

Review of today (5.1-5.3)Review of today (5.1-5.3)

 Enumeration types

● Ordinal types

 Subrange types

● Expression, assignment compatibility

 Array types

● How to declare an array type
● How to declare a variable of array type
● How to use and access arrays
● Strings



5 Oct 20055 Oct 2005CMPT 14x: 5.1-5.3CMPT 14x: 5.1-5.3 1717

TODO itemsTODO items

 Midterm ch1-4: this Friday!

● (same day as MATH123 calc midterm)
● Review in-class tomorrow morning

 Lab4 next Tue/Wed: 5.11 #(26 or 28 or 32)

● M-lab section can turn it in up to a week late

 Quiz ch5 postponed until Fri 14Oct

 Reading: through §5.5 for Wed 12Oct


