
§5.4-5.8: FOR Loops, More Arrays§5.4-5.8: FOR Loops, More Arrays

12 Oct 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

1) journals in folder

●devo
●midterms back

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 22

Review of typesReview of types

 Modula-2 allows us to define our own types in addition to
the built-in types we've been using so far:
● Atomic types

 Scalar types
● Real types (REAL, LONGREAL)
● Ordinal types

● Whole number types (INTEGER, CARDINAL)
● Enumerations (5.2.1)
● Subranges (5.2.2)

● Structured (aggregate) types

 Arrays (5.3)
● Strings (5.3.1)

 Sets (9.2-9.6)

 Records (9.7-9.12)

done

done

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 33

What's on for today (5.4-5.8)What's on for today (5.4-5.8)

 FOR loops

● Loop control variable
 Needs initialization?
 Value after the loop?

● FOR vs. WHILE: pros/cons?

 Arrays as procedure parameters

● Type compatibility for value/variable params
● Open arrays

 HIGH

 Multidimensional arrays

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 44

IteratingIterating

 We have often used counters to iterate in a loop

counter := start;

WHILE counter <= stop
DO

statement sequence;
INC (counter);

END;

 Modula-2 provides a shorthand to help:

FOR counter := start TO stop
DO

statement sequence;
END;

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 55

Loop control variableLoop control variable

 The loop control variable (e.g., counter)

● Can be any ordinal type (enumerations, etc.)
● Does not need to be initialized before the loop
● Value is undefined after the loop:

FOR counter := start TO stop
DO

statement sequence;
END;

counter := 0;
 (can't depend on counter having a particular value)

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 66

IncrementsIncrements

 An optional constant increment can be given:

FOR counter := start TO stop BY increment
DO

statement sequence;
END;

● This is equivalent to using
INC (counter, increment)

● The increment can be negative, too
● The increment must be a constant expression
● Must be whole number type (not enumeration):

FOR today := Mon TO Fri BY 1

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 77

FOR as shorthand for WHILEFOR as shorthand for WHILE

 For most iterative loops, FOR is a good shorthand

 But WHILE gives you more control:

● e.g., exiting a loop early:
counter := 0;

WHILE counter < max
DO

IF (user wants to quit early)
THEN

counter := max;
END;

INC (counter);
END;

 Loop control variable may not be threatened
inside FOR

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 88

FOR loops and arraysFOR loops and arrays

 Find average of an array:

CONST
length = 10;

VAR
myArray : ARRAY [1 .. length] OF REAL;
sum, average : REAL;
index : CARDINAL;

BEGIN
sum := 0;

FOR index := 1 TO length
DO

INC (sum, myArray [index]);
END;

average := sum / length;

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 99

Arrays as parametersArrays as parameters

PROCEDURE Average
(myArray : ARRAY [1 .. 10] OF REAL) : REAL;

VAR
sum : REAL;
index : CARDINAL;

BEGIN
sum := 0;

FOR index := 1 TO length
DO

INC (sum, myArray [index]);
END;

RETURN sum / length;

END Average;

 But this function can only take arrays of size 10!

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 1010

Array type compatibilityArray type compatibility

 When value parameters use array types:

● Actual param and formal param must be
assignment compatible

 When variable parameters use array types:

● Actual param and formal param must be
exactly the same

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 1111

Open arraysOpen arrays

 An open array does not specify the range:

PROCEDURE Average
(myArray : ARRAY OF REAL) : REAL;

 A REAL array of any length is compatible

 Find the length of the array with HIGH:
FOR index := 0 TO HIGH (myArray)

 Indexing of open arrays is always

[0 .. HIGH (myArray)]

● Even if the array is usually indexed by
enumeration

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 1212

Multidimensional arraysMultidimensional arrays

 Multidimensional arrays are simply arrays of
arrays:

MatrixA : ARRAY [1 .. 3] OF ARRAY [1 .. 4] OF REAL;

● Shorthand:
MatrixA : ARRAY [1 .. 3], [1 .. 4] OF REAL;

 Accessing:

MatrixA [2] [3] := 2.3;

● Shorthand:
MatrixA [2, 3] := 2.3;

 Row-major convention: 1.1 1.2 1.3 1.4
2.1 2.2 2.3 2.4
3.1 3.2 3.3 3.4  MatrixA[2]

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 1313

Open multidimensional arraysOpen multidimensional arrays

 Multidimensional arrays can also be open:

PROCEDURE Average
(A : ARRAY OF ARRAY OF REAL) : REAL;

VAR sum : REAL; row, col : CARDINAL;

BEGIN
sum := 0;
FOR row := 0 TO HIGH (A)

DO
FOR col := 0 TO HIGH (A [row])

DO
INC (sum, A [row, col]);

END;
END;

RETURN sum / (HIGH (A) * HIGH (A[0]));

END Average;

Number of rows

Number of columns

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 1414

Review of today (5.4-5.8)Review of today (5.4-5.8)

 FOR loops

● Loop control variable
 Needs initialization?
 Value after the loop?

● FOR vs. WHILE: pros/cons?

 Arrays as procedure parameters

● Type compatibility for value/variable params
● Open arrays

 HIGH

 Multidimensional arrays

12 Oct 200512 Oct 2005CMPT 14x: 5.4-5.8CMPT 14x: 5.4-5.8 1515

TODO itemsTODO items

 Lab5 due next week:

● §6.11 #(25 / 33) (choose one)

 Homework: §5.11 #22 due Friday

 Quiz ch5 this Friday!

 Reading: through §6.3 for Friday

