
§6.5-6.8: Writing Your Own Library§6.5-6.8: Writing Your Own Library

17 Oct 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● no quiz today

●devo

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 22

Library modules vs. programsLibrary modules vs. programs

 Library modules (e.g. STextIO) are different from
program modules (e.g. HelloWorld):

● Linker needs to know what procedures /
entities are available for import from a library

● Programs that use a library don't need to know
the implementation of its procedures

 Hence there are two parts to a library module:

● DEFINITION (a.k.a. header file)
● IMPLEMENTATION (a.k.a. code file)

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 33

Viewing standard library modulesViewing standard library modules

 You can see the definition and implementation
files for standard library modules in Stonybrook:

● View -> Show all modules
● Each library has a DEF and an IMP

 Make sure not to modify the standard libraries!

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 44

An example of a definition fileAn example of a definition file

 Let's peek at
RealMath's DEF:

 Keyword
DEFINITION

 No bodies to the
procedures

 No body to the
module

 No BEGIN
anywhere

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 55

An example of an implementationAn example of an implementation

 Here's part of RealMath's IMP:

 Keyword IMPLEMENTATION

 Parameter lists
must match
DEFINITION

 IMPORTs
as needed

 Body of module
optional
(initialization)

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 66

Module interfaceModule interface

 The interface of a module is the way in which
other modules use it: its publicly accessible

● Procedures, variables, types, constants, etc.

 There may be other procedures, variables, etc.
that are internal to the module and should be
hidden from public view

 When designing a module, think carefully about
its public interface

● c.f. preconditions

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 77

Example: Fractions ADTExample: Fractions ADT

 Often modules are used to define abstract data
types: let's make a Fraction type:

DEFINITION MODULE Fractions;

 We can represent a fraction a/b internally as an
ordered pair (array of length 2) of integers:

TYPE Fraction = ARRAY [1 .. 2] OF INTEGER;

 This Fractions module will contain the Fraction
type as well as all the procedures we need to use
variables of type Fraction

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 88

Creating a library function: Creating a library function: InvInv

 Let's make a function that inverts a fraction:

● In the definition module:
PROCEDURE Inv (x : Fraction) : Fraction;

● In the implementation module:
PROCEDURE Inv (x : Fraction) : Fraction;

VAR temp : INTEGER;

BEGIN
temp := x[1];
x[1] := x[2];

x[2] := temp;

END Inv;

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 99

Using our Fractions libraryUsing our Fractions library

 Let's try to use our new Fractions library:

MODULE FractionTest;

FROM Fractions IMPORT
Inv;

VAR
applesPerFriend, friendsPerApple : Fraction;

BEGIN

friendsPerApple := Inv (applesPerFriend);

END FractionTest.

 Oops, forgot to provide a way to initialize a
Fraction!

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1010

Hiding implementation detailsHiding implementation details

 Since a Fraction is just an ARRAY [1..2] OF
INTEGER, so FractionTest could initialize just by

(* initialize with 1.5 apples per friend *)

applesPerFriend[1] := 3;

applesPerFriend[2] := 2;

 But we want the Fractions library to hide the fact
that a Fraction is really an array

● Array is just an implementation detail
● Future version could use some other way
● Public interface should stay the same
● A user could set denominator to zero

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1111

Accessor functionsAccessor functions

 We can provide an accessor function that allows
the user to get at the numerator and
denominator in a controlled manner

● Error checking (denominator ≠ 0)
● Consistent interface (if we switch from arrays)

 Set function:

● Assign (num, denom : INTEGER) : Fraction

 Get functions:

● Numerator (x : Fraction) : INTEGER
● Denominator (x : Fraction) : INTEGER

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1212

Set/Get functionsSet/Get functions

 In the definition module:

PROCEDURE Assign (num, denom:INTEGER): Fraction;

 In the implementation module:

PROCEDURE Assign (num,denom:INTEGER): Fraction;

VAR x : Fraction;

BEGIN
x[1] := num;
x[2] := denom;

RETURN x;

END Assign;

● Add error checking:

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1313

Design choices for error handlingDesign choices for error handling

 No error checking:

● Make sure preconditions are clearly stated in
documentation: writeup, comments, user
manual, WriteString, etc.

● Not ideal – users can be very creatively bad!

 Precondition checking:

● Use IF to check preconditions in code
● If bad input, take evasive action

 Postcondition checking:

● ReadResult: if error, continue but set a flag

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1414

TODO itemsTODO items

 Lab5 due today/tomorrow/Wed:

● §6.11 #(25 / 33) (choose one)

 Quiz ch6 on Wed

 Homework due Fri: 6.11 #28

 Quiz ch7 on Fri

 Reading: through §7.5 for Wed

