
§8.3-8.6: Low Level I/O§8.3-8.6: Low Level I/O

31 Oct 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder

●devo



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 22

Review of last time (8.1-8.2)Review of last time (8.1-8.2)

 Number bases:

● Binary
● Hexadecimal (0BEEFH)
● Octal (115B)

 Defining characters with octal: 115C

 Units of measure of memory:

● Bits, nibbles, bytes, words, pages

 Units of measure for hard disks:

● C/H/S geometry

 SI units vs binary units, KB vs. Kb, etc.



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 33

What's on for today (8.3-8.6)What's on for today (8.3-8.6)

 SYSTEM module

● LOC, ADDRESS, ADR, CAST (vs. VAL)
● M2 variables pointing to specific memory

 Files:

● Logical/program/physical files
● text/binary streams, channels

 Sequential streams: StreamFile, *IO libraries

 Rewindable streams: SeqFile, *IO libraries

● Reread and Rewrite
● File modes: read/write/old



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 44

The SYSTEM moduleThe SYSTEM module

 M2 allows us some direct low-level access:

● Lots of goodies can be imported from the 
SYSTEM library

● It's not really a library (no DEF/IMP), but a 
pseudo-module provided by the compiler

● Importing from SYSTEM flags our program as 
non-portable: it uses low-level implementation-
specific features

 SYSTEM is a power tool:

● You can shoot yourself in the foot pretty badly!



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 55

Features of SYSTEMFeatures of SYSTEM

 Some things we can import from SYSTEM:

● TYPE LOC;
 Data storage units have this type

● TYPE ADDRESS;
 Storage locations (memory address) have this type

● PROCEDURE ADR (VAR v): ADDRESS;
 Returns the storage address of a variable

● PROCEDURE CAST (<type>; val): <type>;
 Similar to VAL, but unsafe conversion



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 66

CAST vs. VALCAST vs. VAL

 Both CAST and VAL convert types:
VAR myCard : CARDINAL; myReal : REAL;

myCard := VAL (CARDINAL, myReal);

myCard := CAST (CARDINAL, myReal);

 But VAL converts the value of myReal to a 
meaningfully equivalent CARDINAL value

● (e.g., truncates the real number)
● Safe type conversion

 CAST re-interprets myReal's bit pattern as a CARD

● Re-interpretation could lead to weird value
● Unsafe type conversion



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 77

Accessing specific memoryAccessing specific memory

 You can declare a variable to refer to a particular 
location in the computer's memory:

VAR keyboard [0C000H] : CHAR;

 This example points to one byte (CHAR) at 
location C00016 in memory

● This could be part of the keyboard buffer
● Or a pixel on the screen
● Or memory used by other programs
● Very dangerous!

 Memory protection: OS prevents one program 
from accessing another program's memory



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 88

Example: Generic swapExample: Generic swap

MODULE Swaps;

FROM SYSTEM IMPORT LOC;

PROCEDURE CanSwap (a, b: ARRAY OF LOC) : BOOLEAN

BEGIN

RETURN HIGH (a) = HIGH (b);

END CanSwap;

PROCEDURE Swap (VAR a, b : ARRAY OF LOC); (* any type! *)

VAR

temp : LOC;

max, count : CARDINAL;



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 99

Generic swap, cont.Generic swap, cont.

BEGIN

IF CanSwap (a, b)

THEN

FOR count := 0 TO HIGH (a) (* swap one LOC at a time *)
DO

temp := a [count];
a [count] := b [count];
b [count] := temp;

END;
END;

END Swap;

END Swaps.



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1010

FilesFiles

 A logical file is an abstract concept in the 
programmer's mind

 A program file is generally a variable in the code 
that refers to a file

 A physical file is a recording of a logical file – 
e.g., in magnetic media on a hard disk

 A stream is a sequence of data items of the same 
type, from an origin to a destination

● Text stream: items regarded as characters
● Binary stream: items regarded as bits

 A stream flows through a channel



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1111

Streams and filesStreams and files

 STextIO, SRealIO, etc. work on text streams

 Sequential files are organized as streams:

● Can be written only at the end (appended)
 e.g., output stream to speakers

● Two kinds of sequential text files:
 Restricted stream:

● Read from start; write to current position

 Rewindable sequential stream:
● Can also rewind current position back to start

 Random-access files can be indexed:

● Write at a given position within the file



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1212

Restricted stream I/ORestricted stream I/O

 The StreamFile library opens and closes 
sequential files

 The TextIO, RealIO, etc. libraries contain the 
same procedures as their S-equivalents, but

● Each procedure has an extra param specifying 
the file channel to use:

VAR
out: ChanId; (* file channel *)
result : OpenResults;

StreamFile.Open (out, “output.txt”, write, result);

WholeIO.WriteCard (out, myCard, 0);

StreamFile.Close (out);



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1313

Standard input, standard outputStandard input, standard output

 The standard input and output channels (usually 
keyboard and screen) are file channels:

WholeIO.ReadCard (StdChans.StdInChan(), myCard);

WholeIO.WriteCard (StdChans.StdOutChan(), myCard, 
0);

 With StreamFile, you can have multiple channels 
open at the same time

● e.g., output to screen and file simultaneously
● Now we can understand how RedirStdIO works



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1414

Rewindable sequential stream I/ORewindable sequential stream I/O

 The SeqFile library opens and closes rewindable 
sequential streams:

● OpenRead, OpenWrite, OpenAppend
● Reread (cid: ChanId): rewind to beginning
● Rewrite (cid: ChanId): clear file and start over

 Open streams with a combination of modes:

● Read, write, old
 Old: ok to overwrite (clobber) existing files

 If opened read+write, use Reread/Rewrite to 
switch between reading and writing



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1515

Example: rewindable fileExample: rewindable file

 Read from keyboard, store in file, read back:

FROM SeqFile IMPORT
ChanId, OpenWrite, write, read, old, Close, Reread, 

OpenResults;

FROM WholeIO IMPORT
ReadCard, WriteCard;

FROM StdChans IMPORT
StdInChan, StdOutChan;

VAR
file : ChanId;

result : OpenResults;

BEGIN
OpenWrite (file, “output.txt”, read+write+old, result);



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1616

Example: rewindable file, cont.Example: rewindable file, cont.

IF result = opened
THEN

WriteString (StdOutChan(), “Type a number: ”);
WriteLn (StdOutChan());
ReadCard (StdOutChan(), myCard);
WriteCard (file, myCard, 0);

Reread (file); (* rewind file and start reading *)
ReadCard (file, myCard);

END;

Close (file);



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1717

Review of today (8.3-8.6)Review of today (8.3-8.6)

 SYSTEM module

● LOC, ADDRESS, ADR, CAST (vs. VAL)
● M2 variables pointing to specific memory

 Files:

● Logical/program/physical files
● text/binary streams, channels

 Sequential streams: StreamFile, *IO libraries

 Rewindable streams: SeqFile, *IO libraries

● Reread and Rewrite
● File modes: read/write/old



31 Oct 200531 Oct 2005CMPT 14x: 8.3-8.6CMPT 14x: 8.3-8.6 1818

TODO itemsTODO items

 No lab this week!

 Homework due Wed: 8.13 #44

 Quiz ch8 on Fri

 Reading: through §9.6 for Wed


