
§9.7-9.10: Records§9.7-9.10: Records

4 Nov 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● Quiz today

●devo



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 22

Quiz ch8 Quiz ch8 (7 questions, 20 marks, 10 minutes)(7 questions, 20 marks, 10 minutes)

 Convert 1101 1011 from binary to hexadecimal.

 If 101C = 'A', what is 110C?

 Express 110C using the CHR() notation.

 Express 2Mb/sec in bytes/sec.
 (you may express your answer in powers of 2)

 In your own words, describe the difference 
between CAST and VAL.

 What M2 type do data storage units have, and in 
what library is this type found?

 What M2 library is used to open/close rewindable 
sequential text streams?



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 33

Quiz ch8 answersQuiz ch8 answers

 1101 1011: convert one nibble at a time

● = 0DBH

 'A' = 101C = CHR(65): first letter

● 110C = CHR(72) = eighth letter = H

 2Mb/s

● = 21220 bit/s = 221 bit/s = 218 byte/s
 CAST: does not modify bit pattern, unsafe

● VAL: converts value, safe type conversion

 data storage units: SYSTEM.LOC
SeqFile rewindable sequential text streams: 



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 44

Modula-2 TypesModula-2 Types

 Atomic types

● Scalar types

 Real types (REAL, LONGREAL)

 Ordinal types
● Whole number types (INTEGER, CARDINAL)
● Enumerations (5.2.1)
● Subranges (5.2.2)

 Structured (aggregate) types

● Arrays (5.3)

 Strings (5.3.1)

● Sets (9.2-9.6)

● Records (9.7-9.12)

today



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 55

Review of last time (9.1-9.6)Review of last time (9.1-9.6)

 Using sets

● Defining a set type
● Declaring a set variable
● Constructing a set

 Operations with sets

● Set operations: IN, +, *, -, /
● INCL/EXCL
● Set comparisons: =, <>, >=, <=

 Bitsets and packed sets



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 66

What's on for today (9.7-9.10)What's on for today (9.7-9.10)

 Records

● Defining record types
● Fields
● Initializing record variables
● WITH

 Using records and arrays

● Example: Class of students

 Output of aggregate data



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 77

RecordsRecords

 All members of a set have to be the same type

 An M2 record abstracts an aggregate of related 
data (fields) of various types

TYPE
EmployeeRecord = 

RECORD
name : ARRAY [0 .. 255] OF CHAR;
age : CARDINAL;
salary : REAL;

END;

VAR
emp1 : EmployeeRecord;

emp1.name := “Joe Smith”;



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 88

Record fieldsRecord fields

 A field in a record can have any type, including 
another record type:

EmployeeRecord = 
RECORD

name : ARRAY [0 .. 255] OF CHAR;
age : CARDINAL;
salary : REAL;
birthdate =

RECORD (* anonymous type *)
year : CARDINAL;
month : [1 .. 12];
day : [1 .. 31];

END;
END;

emp1.birthdate.month := 6;



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 99

Using recordsUsing records

 We can initialize records by filling in each of its 
fields:

emp1.name := “Joe Smith”;

emp1.birthdate.month := 6;

● Uninitialized fields are like uninitialized vars

 We can assign a whole record to another:

emp2 := emp1;

 But we cannot compare whole records:

IF emp1 = emp2 ... (* error! *)



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1010

Records and WITH (scope) blocksRecords and WITH (scope) blocks

 As a shorthand for

emp1.name := “Joe Smith”;

emp1.birthdate.month := 6;

 We can also write

WITH emp1
DO

name := “Joe Smith”;
birthdate.month := 6;
WITH birthdate

DO
year := 1985;

END;
END;



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1111

Records vs. arrays (or both?)Records vs. arrays (or both?)

 Say we're keeping track of a class of students:

● For each student, store name, student ID, and 
marks for each of four exams

 We could implement this with separate arrays:

● One array for all the names
● Another array for all the student IDs
● One multidimensional array for all exam marks

 Or we could use an array of records:

● Each record stores everything for one student
● 3 fields: name, ID, exam marks



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1212

Array of student recordsArray of student records

TYPE
NameString = ARRAY [0 .. 255] OF CHAR; (* string *)
Student =

RECORD
name : NameString;
ID : CARDINAL;
marks : ARRAY [1 .. 4] OF REAL;

END;
Class = ARRAY [1 .. 30] OF Student;

VAR
cmpt145 : Class;

BEGIN
WITH cmpt145[1] (* one student at a time *)

DO
marks[1] := 95.1; ...



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1313

Storing aggregate data to fileStoring aggregate data to file

 We know how to output atomic data to files in 
text form:

WholeIO.WriteCard (cid, class[1].ID, 0);

 To output aggregate data to files,

● We could devise our own text format:
TextIO.WriteString (cid, “Student ID:”);

WholeIO.WriteCard (cid, class[1].ID, 0);

● But easier and more space-efficient to output 
as binary:

RawIO.Write (cid, class[1]); (* output 1st student *)

RawIO.Write (cid, class); (* output whole class *)



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1414

Review of today (9.7-9.10)Review of today (9.7-9.10)

 Records

● Defining record types
● Fields
● Initializing record variables
● WITH

 Using records and arrays

● Example: Class of students

 Output of aggregate data



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1515

TODO itemsTODO items

 Lab 7 due next week: 8.13 #(53 / 60 / 62)

 HW due next Wed: 9.14 #30

 Quiz ch9 next Wed

 Reading: through §9.10 for Fri


