
§9.7-9.10: Records§9.7-9.10: Records

4 Nov 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● Quiz today

●devo



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 22

Quiz ch8 Quiz ch8 (7 questions, 20 marks, 10 minutes)(7 questions, 20 marks, 10 minutes)

 Convert 1101 1011 from binary to hexadecimal.

 If 101C = 'A', what is 110C?

 Express 110C using the CHR() notation.

 Express 2Mb/sec in bytes/sec.
 (you may express your answer in powers of 2)

 In your own words, describe the difference 
between CAST and VAL.

 What M2 type do data storage units have, and in 
what library is this type found?

 What M2 library is used to open/close rewindable 
sequential text streams?



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 33

Quiz ch8 answersQuiz ch8 answers

 1101 1011: convert one nibble at a time

● = 0DBH

 'A' = 101C = CHR(65): first letter

● 110C = CHR(72) = eighth letter = H

 2Mb/s

● = 21220 bit/s = 221 bit/s = 218 byte/s
 CAST: does not modify bit pattern, unsafe

● VAL: converts value, safe type conversion

 data storage units: SYSTEM.LOC
SeqFile rewindable sequential text streams: 



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 44

Modula-2 TypesModula-2 Types

 Atomic types

● Scalar types

 Real types (REAL, LONGREAL)

 Ordinal types
● Whole number types (INTEGER, CARDINAL)
● Enumerations (5.2.1)
● Subranges (5.2.2)

 Structured (aggregate) types

● Arrays (5.3)

 Strings (5.3.1)

● Sets (9.2-9.6)

● Records (9.7-9.12)

today



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 55

Review of last time (9.1-9.6)Review of last time (9.1-9.6)

 Using sets

● Defining a set type
● Declaring a set variable
● Constructing a set

 Operations with sets

● Set operations: IN, +, *, -, /
● INCL/EXCL
● Set comparisons: =, <>, >=, <=

 Bitsets and packed sets



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 66

What's on for today (9.7-9.10)What's on for today (9.7-9.10)

 Records

● Defining record types
● Fields
● Initializing record variables
● WITH

 Using records and arrays

● Example: Class of students

 Output of aggregate data



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 77

RecordsRecords

 All members of a set have to be the same type

 An M2 record abstracts an aggregate of related 
data (fields) of various types

TYPE
EmployeeRecord = 

RECORD
name : ARRAY [0 .. 255] OF CHAR;
age : CARDINAL;
salary : REAL;

END;

VAR
emp1 : EmployeeRecord;

emp1.name := “Joe Smith”;



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 88

Record fieldsRecord fields

 A field in a record can have any type, including 
another record type:

EmployeeRecord = 
RECORD

name : ARRAY [0 .. 255] OF CHAR;
age : CARDINAL;
salary : REAL;
birthdate =

RECORD (* anonymous type *)
year : CARDINAL;
month : [1 .. 12];
day : [1 .. 31];

END;
END;

emp1.birthdate.month := 6;



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 99

Using recordsUsing records

 We can initialize records by filling in each of its 
fields:

emp1.name := “Joe Smith”;

emp1.birthdate.month := 6;

● Uninitialized fields are like uninitialized vars

 We can assign a whole record to another:

emp2 := emp1;

 But we cannot compare whole records:

IF emp1 = emp2 ... (* error! *)



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1010

Records and WITH (scope) blocksRecords and WITH (scope) blocks

 As a shorthand for

emp1.name := “Joe Smith”;

emp1.birthdate.month := 6;

 We can also write

WITH emp1
DO

name := “Joe Smith”;
birthdate.month := 6;
WITH birthdate

DO
year := 1985;

END;
END;



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1111

Records vs. arrays (or both?)Records vs. arrays (or both?)

 Say we're keeping track of a class of students:

● For each student, store name, student ID, and 
marks for each of four exams

 We could implement this with separate arrays:

● One array for all the names
● Another array for all the student IDs
● One multidimensional array for all exam marks

 Or we could use an array of records:

● Each record stores everything for one student
● 3 fields: name, ID, exam marks



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1212

Array of student recordsArray of student records

TYPE
NameString = ARRAY [0 .. 255] OF CHAR; (* string *)
Student =

RECORD
name : NameString;
ID : CARDINAL;
marks : ARRAY [1 .. 4] OF REAL;

END;
Class = ARRAY [1 .. 30] OF Student;

VAR
cmpt145 : Class;

BEGIN
WITH cmpt145[1] (* one student at a time *)

DO
marks[1] := 95.1; ...



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1313

Storing aggregate data to fileStoring aggregate data to file

 We know how to output atomic data to files in 
text form:

WholeIO.WriteCard (cid, class[1].ID, 0);

 To output aggregate data to files,

● We could devise our own text format:
TextIO.WriteString (cid, “Student ID:”);

WholeIO.WriteCard (cid, class[1].ID, 0);

● But easier and more space-efficient to output 
as binary:

RawIO.Write (cid, class[1]); (* output 1st student *)

RawIO.Write (cid, class); (* output whole class *)



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1414

Review of today (9.7-9.10)Review of today (9.7-9.10)

 Records

● Defining record types
● Fields
● Initializing record variables
● WITH

 Using records and arrays

● Example: Class of students

 Output of aggregate data



4 Nov 20054 Nov 2005CMPT 14x: 9.7-9.10CMPT 14x: 9.7-9.10 1515

TODO itemsTODO items

 Lab 7 due next week: 8.13 #(53 / 60 / 62)

 HW due next Wed: 9.14 #30

 Quiz ch9 next Wed

 Reading: through §9.10 for Fri


