
§10.12: Exceptions§10.12: Exceptions

16 Nov 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● Paper topic

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 22

Review of last time (10.5-10.11)Review of last time (10.5-10.11)

 Local modules

 Import and export of items from modules

 Qualified export

 General LOOP and EXIT

 RETURN

 HALT (vs. RETURN?)

 FINALLY

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 33

What's on for today (10.12)What's on for today (10.12)

 Exceptions: another level of error handling

● Raise/handle (a.k.a. throw/catch)
● EXCEPT clause:

 Do nothing, RETURN, RETRY

● Built-in exceptions: M2EXCEPTION:
 M2Exceptions, IsM2Exception(), M2Exception()

● Standard library exceptions: e.g., IOChan:
 ChanExceptions, IsChanException(),ChanException()

● User defined exceptions: how to raise/handle
● Exceptions and termination

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 44

Options for error handlingOptions for error handling

 Use a combination of these:

● Ask the user to be nice:
 User manual, precondition comments, WriteString

● Print an error message to screen
● Set a result flag:

 As a parameter: Open(...., res)
 Accessible via separate function: ReadResults()

● Panic and die (HALT)
● Raise an exception: DIVIDE_BY_ZERO

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 55

ExceptionsExceptions

 When an exception is raised (thrown),

● execution of the current procedure stops, and
● Control jumps to the nearest exception handler

(catches the exception)

 The exception handler can cleanup and either

● Pass control on to next outer handler, or
● RETURN back to whoever called the procedure

that raised the exception, or
● RETRY the procedure from the start

 If the exception reaches outermost level, an error
message is automatically generated

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 66

EXCEPT clauseEXCEPT clause

 Any procedure or module body can have an
exception handler: EXCEPT clause

● FINALLY clause can have its own EXCEPT:
MODULE MyModule;

BEGIN
(* module body may raise an exception *)

EXCEPT
(* handler for exceptions raised in body *)

FINALLY
(* finalization clause *)

EXCEPT
(* handler for exceptions raised in FINALLY clause *)

END MyModule.

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 77

M2 built-in exceptionsM2 built-in exceptions

 Built-in exceptions are just an enumeration:

M2EXCEPTION.M2Exceptions =
(indexException, rangeException, ...);

 An exception handler can check if an exception
has been raised:

IF M2EXCEPTION.IsM2Exception() THEN ...

 And find out which exception has been raised:

IF M2EXCEPTION.M2Exception() = rangeException

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 88

Example: handling div-by-0Example: handling div-by-0

MODULE DivByZero;

FROM M2EXCEPTION IMPORT
M2Exceptions, M2Exception, IsM2Exception;

VAR myInt : INTEGER;

BEGIN
myInt := 5 / 0;

EXCEPT
IF IsM2Exception() AND

(M2Exception() = wholeDivException)
THEN

WriteString (“Divided by zero, but we're okay.”);
RETURN; (* exception is cleared *)

END;

END DivByZero.

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 99

Standard library exceptionsStandard library exceptions

 Some standard libraries define their own
exceptions similarly to the built-in exceptions:

MODULE IOChan;

TYPE ChanExceptions =
(wrongDevice, notAvailable, skipAtEnd, ...);

PROCEDURE IsChanException() : BOOLEAN;

PROCEDURE ChanException() : ChanExceptions;

 Handle these exceptions in similar way

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 1010

User-defined exceptionsUser-defined exceptions

 You can also define your own exceptions:

● Define an enumeration type:
TYPE MyEx = (Goodness, Badness, Ugliness);

● Register with the M2 exception system:
FROM EXCEPTIONS IMPORT

ExceptionSource, AllocateSource;

VAR mysrc : ExceptionSource;

AllocateSource (mysrc);

 Raise your exception with EXCEPTIONS.RAISE:

RAISE (mysrc, ORD (Badness), “The sky has fallen!”);

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 1111

Handling your own exceptionsHandling your own exceptions

 EXCEPTIONS pseudomodule:

● IsExceptionalExecution (): BOOLEAN;
 Check if any exception has been raised

● IsCurrentSource (mysrc): BOOLEAN;
 Check if the exception was raised by this source

● CurrentNumber (mysrc): CARDINAL;
 Which exception was raised (ORD of enumeration

type)

● GetMessage (string);
 Get the string message associated with the

exception that was raised

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 1212

User-defined exceptions exampleUser-defined exceptions example

FROM EXCEPTIONS IMPORT

TYPE MyEx = (Goodness, Badness, Ugliness);

VAR
mySrc : ExceptionSource;
msg : ARRAY [0..30] OF CHAR;

BEGIN
AllocateSource (mySrc);
RAISE (mySrc, ORD (Badness), “Sky has fallen!”);

EXCEPT
IF IsExceptionalExecution() AND IsCurrentSource(mySrc)

THEN
GetMessage (msg);
WriteString (msg);

END;

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 1313

User-defined exception helpersUser-defined exception helpers

 It may be useful to provide some helper functions
with your user-defined exceptions:

● PROCEDURE IsMyEx () : BOOLEAN;
RETURN IsExceptionalExecution() AND

IsCurrentSource (mySrc);

● PROCEDURE MyException () : MyEx;
RETURN VAL (MyEx, CurrentNumber (mySrc));

 Analogous to TYPE M2Exceptions,
IsM2Exception(), and M2Exception()

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 1414

EXCEPT and FINALLYEXCEPT and FINALLY

 All module and procedure bodies can have
EXCEPT clauses

● The FINALLY clause can also have an EXCEPT!

 Exceptions raised in the body get handled by the
body's EXCEPT clause

 Unhandled exceptions result in termination (go to
FINALLY clause)

 The FINALLY clause may raise more exceptions;

● They get handled in FINALLY's EXCEPT clause

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 1515

Summary of today (10.12)Summary of today (10.12)

 Exceptions: another level of error handling

● Raise/handle (a.k.a. throw/catch)
● EXCEPT clause:

 Do nothing, RETURN, RETRY

● Built-in exceptions: M2EXCEPTION:
 M2Exceptions, IsM2Exception(), M2Exception()

● Standard library exceptions: e.g., IOChan:
 ChanExceptions, IsChanException(),ChanException()

● User defined exceptions: how to raise/handle
● Exceptions and termination

16 Nov 200516 Nov 2005CMPT 14x: 10.12CMPT 14x: 10.12 1616

TODO itemsTODO items

 HW due Fri: 9.14 #30

 Quiz ch10 Fri

 Reading: through end of §10 for tomorrow

 Lab #9 next week: 10.15 #(44 / 49)

 Midterm ch8-10 Wed 23Nov (next week)

