
§12.1-12.5: Pointers§12.1-12.5: Pointers

24 Nov 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● Midterms will be

back tomorrow

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 22

Review of last time (11.4-11.9)Review of last time (11.4-11.9)

 Constructors: Type { list }

● Set constructors
● Array constructors
● Record constructors

 Variant records

 Read on your own:

● CASE statement
● Pragmas
● Tips for program efficiency

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 33

What's on for today (12.1-12.5)What's on for today (12.1-12.5)

 Pointers

● Creating pointers, dereferencing pointers
● Assignment compatibility
● Pointer arithmetic
● NIL

 Static vs. dynamic allocation of memory

● Activation records
● Stack, stack pointer

 Dynamic variables: NEW(), DISPOSE()

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 44

PointersPointers

 Values are stored in locations in memory (LOC)

 These locations are accessed by their
ADDRESSes, which point to a spot in memory

TYPE ADDRESS = POINTER TO LOC;

 A pointer is a variable whose value is a memory
address:

VAR
applePtr : POINTER TO REAL;

apple : REAL;

BEGIN
apple := 5.0;
applePtr := SYSTEM.ADR (apple);

0x3e 5.0

applePtr apple

0x3e

0x3f

0x40

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 55

Dereferencing pointersDereferencing pointers

 The last example shows how to make a pointer:

VAR
applePtr : POINTER TO REAL;
apple : REAL;

BEGIN
apple := 5.0;
applePtr := SYSTEM.ADR (apple);

 How do we get at the memory pointed to?
applePtr^ := 4.0; (* same as apple := 4.0 *)

 (C syntax: *applePtr)

● The “hat” operator ^ is called the
dereferencing operator

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 66

Operations on pointersOperations on pointers

 Pointers are compatible with SYSTEM.ADDRESS

● Otherwise diff. pointer types not compatible
● But can always use CAST

 Cannot compare (=, <, etc.) pointers

 Arithmetic operators (+, -, *, /) don't work

● But in SYSTEM: ADDADR, SUBADR, DIFADR
ptr2 := ADDADR (ptr1, 10);

 NIL points to nothing at all

● Handy for initializing pointers: ptr1 := NIL;
● Dereferencing NIL raises sysException

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 77

Pointers and VAR parametersPointers and VAR parameters

 Passing a large data structure to a procedure can
be wasteful:

PROCEDURE P1 (data : BigArray);

● Call-by-value makes a local copy of the array

 We could pass a pointer to the array instead:

PROCEDURE P1 (dataPtr : POINTER TO BigArray);

● Invoke the procedure with:
P1 (SYSTEM.ADR (myData));

 This is essentially how VAR parameters work:

PROCEDURE P1 (VAR data : BigArray);

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 88

Static vs. dynamic memoryStatic vs. dynamic memory

 Static variables are allocated at the beginning of
the program run

● Their size in memory is fixed at compile-time
● VARs named in declaration section

 Dynamic variables are allocated during the
running of a program

● May also be deallocated during program
● Size need not be predetermined
● Reference them via pointers

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 99

Procedure activation recordsProcedure activation records

 Whenever a procedure is invoked, memory is
allocated for its static variables and parameters

● This memory is called the activation record
● One activation record for each invocation, not

for each procedure declaration

 The stack is the area of memory for all activation
records; stack pointer points to top of stack

Program code

Static variables
Activation record

Activation record

Activation record

Heap

Stack
area

Stack pointer

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 1010

Dynamic variablesDynamic variables

 You can make your own dynamically allocated
variables, using NEW() and DISPOSE():

VAR
applePtr : POINTER TO REAL;

BEGIN
NEW (applePtr);

 Allocates memory for a REAL, and stores the
address in applePtr

DISPOSE (applePtr);

 Deallocates the memory, and sets applePtr to NIL

● Dynamic variables are in the heap:
 Open space for program to allocate/deallocate

● If heap is full, NEW sets pointer to NIL

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 1111

A caution about pointersA caution about pointers

 Pointers are a powerful tool and a quick way to
shoot yourself in the foot:

VAR
applePtr : POINTER TO REAL;

BEGIN
applePtr^ := 5.0; (* yipes! *)

● Uninitialized pointer could point to anywhere
in memory: dereferencing it can potentially
modify any accessible memory!
 Can crash older Windows; core dump in Unix

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 1212

Review of today (12.1-12.5)Review of today (12.1-12.5)

 Pointers

● Creating pointers, dereferencing pointers
● Assignment compatibility
● Pointer arithmetic
● NIL

 Static vs. dynamic allocation of memory

● Activation records
● Stack, stack pointer

 Dynamic variables: NEW(), DISPOSE()

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 1313

TODO itemsTODO items

 Reading: through §12.7 for tomorrow

 Homework due tomorrow: 11.10 #10, 15, 16, 22

 No lab next week!

 Get cracking on your paper!

