
§12.6-12.7: Pointer Applications§12.6-12.7: Pointer Applications

25 Nov 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● Homework due

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 22

Review of last time (12.1-12.5)Review of last time (12.1-12.5)

 Pointers

● Creating pointers, dereferencing pointers
● Assignment compatibility
● Pointer arithmetic: ADDADR, SUBADR, DIFADR
● NIL

 Static vs. dynamic allocation of memory

● Activation records
● Stack, stack pointer

 Dynamic variables: NEW(), DISPOSE()

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 33

What's on for today (12.6-12.7)What's on for today (12.6-12.7)

 Endianness

 Pointer applications

● Sorting using pointers
● Resize-able dynamic array ADT

 Type definition
 Indexing the array
 Creating a new array, resizing an existing one

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 44

A note about endiannessA note about endianness

 Recall: CPU works on data one word at a time

● 32-bit CPU: 1word = 4bytes

 1 CARDINAL on a 32-bit machine takes up 1
word

● 6310 = 00....01111112 = 00 00 00 3F16

 But what order are the bytes within a word?

● Big-endian (big end first): 00 00 00 3F
● Little-endian (little end first): 3F 00 00 00

 Different CPUs choose different endianness

● => byte-ordering “holy wars”

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 55

Big-endian vs. little-endianBig-endian vs. little-endian

 Big-endian (MSB: most significant byte first)

● How we write numbers: 4,902
● Can sort numbers lexicographically like strings
● CPUs: Sun Sparc, IBM mainframes, SGI

MIPS/IRIX, most PowerPC
● “Network byte order” for IP (Internet)

 Little-endian (LSB: least significant byte first)

● How we do arithmetic: 236 + 105 (carry)
● CPUs: Intel x86, AMD, IA64/Linux

 No “one true way”, just be aware + byte-swap

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 66

ALLOCATE and DEALLOCATEALLOCATE and DEALLOCATE

 NEW() and DISPOSE() work on predeclared vars:

VAR
myStudent : POINTER TO StudentRecord;

BEGIN
NEW (myStudent);
DISPOSE (myStudent);

 They use Storage.ALLOCATE(), DEALLOCATE():
NEW (myStudent); (* is the same as *)
ALLOCATE (myStudent, SIZE (StudentRecord));

 ALLOCATE/DEALLOCATE work on ADDRESSes
(pointer to any type); you specify how many LOCs

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 77

Pointer apps: sorting big recordsPointer apps: sorting big records

 Bubble sort on array of REALs:

FOR surface := HIGH (list) TO 0 BY -1 DO
FOR bubble := 0 TO surface-1 DO

IF list [bubble] > list [bubble+1] THEN
Swap (list [bubble], list [bubble+1]);

END; END; END;
 (other sorts are faster, but this is simple to code)

 Sorting involves lots of swaps:

● Easy for array of reals, but
● Wasteful for array of big records

 Solution: sort array of pointers to records

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 88

Bubble sort via pointersBubble sort via pointers

PROCEDURE BubbleSort (
VAR list : ARRAY OF POINTER TO bigRecord);

VAR
surface, bubble : CARDINAL;
tmp : POINTER TO bigRecord;

BEGIN
FOR surface := HIGH (list) TO 0 BY -1 DO

FOR bubble := 0 TO surface-1 DO
IF Greater (list [bubble]^, list [bubble+1]^)

THEN
tmp := list [bubble];
list [bubble] := list [bubble+1];
list [bubble+1] := list [bubble];

END; END; END;
END BubbleSort;

 Swapping pointers easier than swap big records

Define
comparison of

bigRecords
Swap
pointers

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 99

Resize-able dynamic array ADTResize-able dynamic array ADT

 Normal arrays in M2 are statically allocated:

● Need to know size at compile-time
● Usually hard-code max length of arrays

 Bigger than needed; wasteful

 Using pointers, we can make an array ADT that
allows the user to resize it as needed:

● Create (length: CARDINAL): DynArray
 Make a new dynamic array of the given length

● Resize (VAR list : DynArray, length)
 Copy contents into a new array of given length
 Throw away anything that doesn't fit

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 1010

DynArray ADTDynArray ADT

 Under the covers, a DynArray is just a record
storing the length and a pointer to the start:

VAR DynArray = RECORD
length : CARDINAL;
start : ADDRESS;

 Index (access) the array via pointer arithmetic:

PROCEDURE Access (list: DynArray, idx: CARDINAL):
POINTER TO ElementType;

VAR eltPtr : POINTER TO ElementType;

BEGIN
RETURN CAST (POINTER TO ElementType,

SYSTEM.ADDADR (list.start, idx * SIZE (ElementType));

END Access;

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 1111

DynArray.Create()DynArray.Create()

 Create() by ALLOCATE()-ing a chunk of memory
of given size:

PROCEDURE Create (length: CARDINAL): DynArray;

VAR
newlist : DynArray;

BEGIN
newlist.length := length;
ALLOCATE (newlist.start, length * SIZE (ElementType);
RETURN newlist;

END Create;

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 1212

DynArray.Resize()DynArray.Resize()

 Resize() by ALLOCATE()-ing a new array and
copying contents into the new array.

● Remember to DEALLOCATE() the old array
PROCEDURE Resize (

VAR list : DynArray, newlength : CARDINAL);

VAR newptr : ADDRESS;

BEGIN
ALLOCATE (newptr, newlength * SIZE (ElementType));
Copy (list.start, newptr, MIN (list.length, newlength));
DEALLOCATE (list.start, list.length * SIZE (ElementType);
list.start := newptr;
list.length := newlength;

END Resize;

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 1313

Internal helper function: Copy()Internal helper function: Copy()

 Copy contents of one block of memory into
another block, one LOC at a time:

PROCEDURE Copy
(src, dst: ADDRESS, len: CARDINAL);

VAR
offset : CARDINAL;
srcPtr, dstPtr : ADDRESS;

BEGIN
FOR offset := 0 TO len-1 DO

srcPtr := ADDADR (src, offset);
dstPtr := ADDADR (dst, offset);
dstPtr^ := srcPtr^;

END;

END Copy;

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 1414

Review of today (12.6-12.7)Review of today (12.6-12.7)

 Endianness

 Pointer applications

● Sorting using pointers (why?)
● Resize-able dynamic array ADT

 TYPE definition
 Access (DynArray, idx)
 Create (length): DynArray
 Resize (VAR DynArray, newlength)
 Other procedures needed to complete ADT?

25 Nov 200525 Nov 2005CMPT 14x: 12.6-12.7CMPT 14x: 12.6-12.7 1515

TODO itemsTODO items

 Reading: through §12.10 for Mon

 Quiz ch11 on Mon

 No lab next week!

 Get cracking on your paper!

