
§12.8-12.11: Linked Lists§12.8-12.11: Linked Lists

28 Nov 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● Quiz ch11 today

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 22

Quiz ch11: Quiz ch11: 2 questions, 20 marks, 10 minutes2 questions, 20 marks, 10 minutes

 [10] Translate into a CASE statement:
 Hint: “No selector constant may be used twice in the

list of selectors”
ReadChar (ans);
IF CAP (ans) = 'Y' THEN

quit := TRUE
ELSIF (CAP (ans) >= 'A') AND (CAP (ans) <= 'Z') THEN

quit := FALSE
ELSE

error := TRUE
END;

 [10] Find a knight's tour of a 3x4 board
starting from (0,0). Hint: next move: (row1,col2).

 (Partial credit for showing backtracking work)

0

1

2

0 1 2 3

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 33

Quiz ch11 answersQuiz ch11 answers

 CASE statement:

ReadChar (ans);

CASE [1] CAP (ans) OF [1]

'Y' [1] : [1]

quit := TRUE | [1]

'A' .. [1] 'X' [2], 'Z' :
quit := FALSE |

ELSE [2]

error := TRUE
END;

 Two knight's tours:

3 6 11 8

12 9 2 5

1 4 7 10

3 6 9 12

8 11 2 5

1 4 7 10

0 1 2 3

0

1

2

0

1

2

0 1 2 3

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 44

Review of last time (12.6-12.7)Review of last time (12.6-12.7)

 Endianness

 Pointer applications

● Sorting using pointers
● Resize-able dynamic array ADT

 Type definition
 Indexing the array
 Creating a new array, resizing an existing one

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 55

What's on for today (12.8-12.12)What's on for today (12.8-12.12)

 Linked lists

● Type definition, creating a new list
 Inserting in nth position
 Insert at head, append to tail
 Deleting

● Algorithmic efficiency
● Circularly linked lists
● Bidirectional lists

 Trees

● Binary search trees

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 66

Linked lists: creatingLinked lists: creating

 A linked list is a dynamic ADT where each item in
the list contains a pointer to the next item:

TYPE
ListItemPtr = POINTER TO ListItem;
ListItem = RECORD

data : DataType;
next : ListItemPtr;

END;

VAR
listHead : ListItemPtr;

BEGIN
NEW (listHead);
listHead^.next := NIL;

data next data next

data next

. . .

. . .

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 77

Operations on linked listsOperations on linked lists

 Insert an item in the nth position:

PROCEDURE Insert (head: ListItemPtr, data: DataType,
pos: CARDINAL);

VAR
cur, newitem : ListItemPtr;
count : CARDINAL;

BEGIN
cur := head;
FOR count := 1 TO pos DO cur := cur^.next END;

NEW (newitem);
newitem^.data := data;

newitem^.next := cur^.next;
cur^.next := newitem;

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 88

Special cases of insertSpecial cases of insert

 Insert() didn't work for head or tail of list
 Also check if pos is beyond end of list

 Insert at head:
NEW (newitem);

newitem^.data := data;
newitem^.next := head;

head := newitem; (* the new head of the list *)

 Append to tail:
NEW (newitem);
newitem^.data := data;

newitem^.next := NIL; (* mark end of list *)
cur^.next := newitem; (* already set cur to tail *)

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 99

Deleting from a linked listDeleting from a linked list

 Follow pointers to find the item we want to delete

● Sew up links to skip over the item
● Deallocate the item from memory

tmp := cur^.next;
cur^.next := tmp^.next;

DISPOSE (tmp);

data next

data next

data next

tmp

cur

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 1010

Linked lists: algorithmic efficiencyLinked lists: algorithmic efficiency

 Big-O notation: O(n) means # operations varies
linearly with n

 For a linked list with n items:

● Insert at head: don't have to traverse list: O(1)
● Append to tail: must walk list: O(n)
● General insert:

 Worst-case: O(n)
 Average-case: O(n/2), which is also O(n)

● Deleting: also O(n)

 Double-headed list (keep a tail pointer):

● Speeds up append-to-tail to O(1)

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 1111

Variants of linked listsVariants of linked lists

 Circularly linked list:
 tail^.next = head

 Bidirectional linked list:

TYPE
ListItemPtr = POINTER TO ListItem;
ListItem = RECORD

data : DataType;
prev : ListItemPtr;
next : ListItemPtr;

END;

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 1212

TreesTrees

 Another kind of dynamic ADT is the tree:

● Root: starting node (one per tree)
 Could also have a forest of several trees

● Each node has at most one parent, and
zero or more children

● Leaves: no children
● Depth: length of longest

path from root
● Degree: max # of

children per node

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 1313

Binary search treesBinary search trees

 Binary trees (degree=2) are handy for keeping
things in sorted order:

TYPE

BinaryTree = POINTER TO
BinaryTreeNode;

BinaryTreeNode =

RECORD

data : String;

left, right : BinaryTree;

(* could also have root *)
END;

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

left right

left

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 1414

BSTs and algorithmic efficiencyBSTs and algorithmic efficiency

 Searching in a balanced binary search tree takes
worst-case O(log n) running time:

● Depth of balanced tree is log
2
 n

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 1515

Review of today (12.8-12.11)Review of today (12.8-12.11)

 Linked lists

● Type definition, creating a new list
 Inserting in nth position
 Insert at head, append to tail
 Deleting

● Algorithmic efficiency
● Circularly linked lists
● Bidirectional lists

 Trees

● Binary search trees

28 Nov 200528 Nov 2005CMPT 14x: 12.8-12.11CMPT 14x: 12.8-12.11 1616

TODO itemsTODO items

 HW due Wed: 12.14 #43

 Reading: finish the book (yay!)

 No lab this week

 Paper due 1wk from Wed

