§12.8-12.11: Linked Lists

28 Nov 2005 Reminders:
CMPT14x | i
Dr.SeanHo i iy
Trinity Western University

v IE;:N http://cmptl14x.seanho.com/

LINIVERSITY

QUiZ chll:: questions, 20 marks, 10 minutes

o Translate into a CASE statement:

+ Hint: “No selector constant may be used twice in the
list of selectors”
ReadChar (ans);
IF CAP (ans) ='Y' THEN

quit := TRUE

ELSIF (CAP (ans) >="'A") AND (CAP (ans) <='"Z2") THEN
quit := FALSE

ELSE 2
error := TRUE 1

END; 0

= Find a knight's tour of a 3x4 board 01 23
starting from (0,0). Hint: next move: (rowl,col2).

+ (Partial credit for showing backtracking work)

A

i

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

Quiz ch11 answers

m CASE statement: N R P
ReadChar (ans); ‘
CASE CAP (ans) OF 11121 91215
lYl :
quit := TRUE | ol 1T 14| 7110
Al X, I EEE
quit := FALSE |
ELSE
error := TRUE 2l 31619 |12
END;

= Two knight's tours: 8ty 2 3

o1 141]|7 |10

0 1 2 3

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

Review of last time (12.6-12.7)

® Endianness
m Pointer applications
Sorting using pointers

Resize-able dynamic array ADT
+ Type definition
+ Indexing the array
+ Creating a new array, resizing an existing one

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

What's on for today (12.8-12.12)

m Linked lists

Type definition, creating a new list

¢+ Inserting in nth position
+ Insert at head, append to tail
+ Deleting

Algorithmic efficiency
Circularly linked lists
Bidirectional lists

m [rees
Binary search trees

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

Linked lists: creating

m A linked list is a dynamic ADT where each item in
the list contains a pointer to the next item:

TYPE

ListitemPtr = POINTER TO Listitem;

Listitem = RECORD

data : DataType;
next : ListltemPtr;

data

next
—

END;
VAR /
listHead : ListltemPtr;
BEGIN

NEW (listHead);
listHeadA.next := NIL;

Y ERN CMPT 14x: 12.8-12.11
LINIVERSITY

data | next
—

data ‘ ng_ﬁj \

28 Nov 2005

Operations on linked lists

® [nsert an item in the nth position:

PROCEDURE Insert (head: ListltemPtr, data: DataType,
pos: CARDINAL);
VAR

cur, newitem : ListlitemPtr;
count : CARDINAL;

BEGIN
cur := head;
FOR count:=1 TO pos DO cur := curA.next END;
NEW (newitem);
hewitemA.data := data;
newitemA.next := curA.next;
CurA.next := newitem;

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

Special cases of insert

m Insert() didn't work for head or tail of list
+ Also check if pos is beyond end of list

®m |Insert at head:

NEW (hewitem);

hewitemA.data := data;

newitemA.next := head;

head := newitem; (* the new head of the list %)

® Append to tail:

NEW (newitem);

hewitemA.data := data;

newitemA.next := NIL; (* mark end of list ¥)
curA.next := newitem; (* already set cur to tail *)

Mo

ITY

ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

Deleting from a linked list

® Follow pointers to find the item we want to delete
Sew up links to skip over the item
Deallocate the item from memory

tmp := curA.next;
curA.next := tmpA.next;
DISPOSE (tmp);

1
U] data| next —Q|data next
Y4
4

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

Linked lists: algorithmic efficiency

® Big-O notation: O(n) means # operations varies
linearly with n

®m For a linked list with n items:
Insert at head: don't have to traverse list; O(1)
Append to tail: must walk list: O(n)

General insert:
+* Worst-case: O(n)
+ Average-case: O(n/2), which is also O(n)
Deleting: also O(n)
®m Double-headed list (keep a tail pointer):
Speeds up append-to-tail to O(1)

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

10

Variants of linked lists

® Circularly linked list:
¢ tailA.next = head

m Bidirectional linked list:
TYPE

ListitemPtr = POINTER TO Listitem;

Listitem = RECORD
data : DataType;
prev : ListltemPtr;

next : ListltemPtr;
END;

Y ERN CMPT 14x: 12.8-12.11
LINIVERSITY

28 Nov 2005

11

Trees

m Another kind of dynamic ADT is the tree:

Root: starting node (one per tree)
Could also have a forest of several trees

Each node has at most one parent, and
zero or more children

' eaves: nho children

Depth: length of longest
nath from root

Degree: max # of
children per node

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

12

Binary search trees

m Binary trees (degree=2) are handy for keeping
things in sorted order:
TYPE

BinaryTree = POINTER TO
BinaryTreeNode;

“Braeburn”

BinaryTreeNode =

RECORD

data : String;
left, right : BinaryTree;

(* could also have root *
END;

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

13

BSTs and algorithmic efficiency

m Searching in a balanced binary search tree takes
worst-case O(log n) running time:

Depth of balanced tree is log, n

Y ERN CMPT 14x: 12.8-12.11 28 Nov 2005
LINIVERSITY

14

Review of today (12.8-12.11)

m Linked lists

Type definition, creating a new list

¢+ Inserting in nth position
+ Insert at head, append to tail
+ Deleting

Algorithmic efficiency
Circularly linked lists
Bidirectional lists

m [rees
Binary search trees

Y ERN CMPT 14x: 12.8-12.11
LINIVERSITY

28 Nov 2005

15

TODO i1tems

m HW due Wed: 12.14 #43
m Reading: finish the book (yay!)
®m No lab this week

m Paper due Twk from Wed

W ITY
ERN CMPT 14x: 12.8-12.11
LINIVERSITY

28 Nov 2005

16

