
TreesTrees

30 Nov 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● HW ch12#43 due



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 22

Review of last time (12.8-12.12)Review of last time (12.8-12.12)

 Linked lists

● Type definition, creating a new list
 Inserting in nth position
 Insert at head, append to tail
 Deleting

● Algorithmic efficiency
● Circularly linked lists
● Bidirectional lists



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 33

What's on for todayWhat's on for today

 Trees:

● Definition of terms:
 Parent, children, root, leaves, degree, depth, level, 

forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 44

TreesTrees

 Another kind of dynamic ADT is the tree:

● Root: starting node (one per tree)
 Could also have a forest of several trees

● Each node has at most one parent, and 
zero or more children

● Leaves: no children
● Depth: length of longest

path from root
● Degree: max # of 

children per node



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 55

Searching treesSearching trees

 A depth-first search of a tree pursues each path 
down to a leaf, then backtracks to the next path

 1-2 1-3-5 1-4-6 4-7 4-8

 A breadth-first search finishes each level before 
moving on to the next:

 1 2-3-4 5-6-7-8

1

3 4

5 6 7

2

8

Level 1



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 66

Binary search treesBinary search trees

 Binary trees (degree=2) are handy for keeping 
things in sorted order:

TYPE

BST = POINTER TO BSTNode;

BSTNode = RECORD

name : String;
left, right : BinaryTree;
(* could also have parent ptr *)

END;

VAR root : BST;

BEGIN

NEW (root);

root^ := BSTNode { “”, NIL, NIL };

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

left right

left

 Everything in left 
subtree is smaller

 Everything in right 
subtree is bigger



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 77

Binary tree traversalsBinary tree traversals

 Pre-order traversal of binary tree:

● Do self first, then left child, then right
 3 – 2 – 1 – 5 – 4 - 6

 In-order traversal:

● Do left child, then self, then right child
 1 – 2 – 3 – 4 – 5 – 6 (sorted order in BST)
 e.g. expressions: “12 + (2 * 5)”

 Post-order traversal:

● Do both children first before self
 1 – 2 – 4 – 6 – 5 - 3
 e.g. Reverse Polish Notation: 12, 2, 5, *, +

3

2 5

1 4 6



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 88

Searching a BSTSearching a BST

 Recursive algorithm:

PROCEDURE Search (tree: BST, key: String): BST;
IF tree = NIL THEN

RETURN tree
END;

CASE Strings.Compare (key, tree^.name) OF
equal :

RETURN tree |
less :

RETURN Search (tree^.left, key) |
greater :

RETURN Search (tree^.right, key)
END; “Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 99

Inserting into a BSTInserting into a BST

 Keep it sorted: insert in a proper place

 One choice: always insert as a leaf

● Use Search() algorithm to hunt for where the 
node ought to be if it were already in the tree

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 1010

Deleting from a BSTDeleting from a BST

 Need to maintain sorted structure of BST

 Replace node with predecessor or successor leaf

● Predecessor: largest node in left subtree
● Successor: smallest node in right subtree

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo” successor

“Fuji”

“Ambrosia” “Gala”

“Cameo”



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 1111

BSTs and algorithmic efficiencyBSTs and algorithmic efficiency

 Searching in a balanced binary search tree takes 
worst-case O(log n) running time:

● Depth of balanced tree is log2 n

● Compare with arrays/linked lists: O(n)

 But depending on order of inserts, tree may be 
unbalanced:

 Insert in order: Ambrosia, Braeburn, Fuji, Gala:
 Tree degenerates to linked-list
 Searching becomes O(n)

 Keeping a BST balanced is a larger topic
 e.g., Splay-trees

“Fuji”

“Braeburn”

“Ambrosia”

“Gala”



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 1212

Review of todayReview of today

 Trees:

● Definition of terms:
 Parent, children, root, leaves, degree, depth, level, 

forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search



30 Nov 200530 Nov 2005CMPT 14x: 14.7-14.8 (extra)CMPT 14x: 14.7-14.8 (extra) 1313

TODO itemsTODO items

 Lab 10 due next week: §11.10 #(25 / 30)

 Paper due next Wed

 Final exam: Wed 14Dec 2-4pm here


