
A Gentle Introduction toA Gentle Introduction to
Object-Oriented ProgrammingObject-Oriented Programming

2 Dec 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder

● Paper marking
rubric is online



2 Dec 20052 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 22

Review of last timeReview of last time

 Trees:

● Definition of terms:
 Parent, children, root, leaves, degree, depth, level, 

forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search



2 Dec 20052 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 33

Procedural vs. object-orientedProcedural vs. object-oriented

 Statements in M2 code place the emphasis on the 
action being performed rather than the data:

 WriteString (“Ambrosia”);
● “I will write; here's the string I will write”

 Procedural code is generally action-oriented;

● Object-oriented code is data-oriented:
 appleName := “Ambrosia”;
 appleName.Write();

● “appleName, write yourself!”
● (appleName is a string object that knows how to write 

itself; we don't have to know how it does that)

 OO languages: C++, Java, SmallTalk, Python



2 Dec 20052 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 44

Everything is an objectEverything is an object

 In object-oriented programming, all data are 
objects:

● Variables, modules, libraries, even exceptions

 We make things happen by passing messages 
between objects

 appleName.Write();
 numApples.Write();

 The object itself defines what messages it 
accepts: these are called its methods

● e.g., Strings may have Write() and Length(),
but Reals might only have Write()

main
program

appleName

numApples

Write()

String
Write()Write()

Real



2 Dec 20052 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 55

Methods and attributesMethods and attributes

 Everything you can do with an object is 
encapsulated in its object definition

● Methods make up the interface to the object

 Objects can also have attributes (variables)

 Our Fractions ADT example:

● Methods: Numerator(), Denominator(), Add(), 
Multiply(), Invert(), etc.
 Everything you need to interact with a Fraction

● Attributes: frac : ARRAY[1..2] OF INTEGER;
 Could also have two attributes: num, denom: INT



2 Dec 20052 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 66

Classes and instancesClasses and instances

 We define (declare) object classes (types)

● Attributes
● Methods (interface)

 Constructor and destructor



2 Dec 20052 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 77

Thinking OOThinking OO

 In procedural form, we might multiply a Fraction 
by a constant c by:

 frac2 := Fractions.Multiply (frac1, c);

 In OO form, we ask the frac1 object to multiply 
itself by c and return the result:

 frac2 := frac1.Multiply (c);

 But OO is more than just different syntax:

● OO design process is different:
● Design objects and interfaces between objects



2 Dec 20052 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 88

Designing an OO programDesigning an OO program

 Simple cash-register example:

● Type in list of items (name and price)
● Print subtotal and total including GST

 One possible OO design:



2 Dec 20052 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 99

TODO itemsTODO items

 Lab 10 due next week: §11.10 #(25 / 30)

 Paper due next Wed

 Final exam: Wed 14Dec 2-4pm here


