
Object-Oriented Programming:Object-Oriented Programming:
InheritanceInheritance

5 Dec 2005
CMPT14x
Dr. Sean Ho
Trinity Western University

http://cmpt14x.seanho.com/

Reminders:

● journals in folder
● quiz ch12 today

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 22

Quiz ch12: Quiz ch12: 4 questions, 20 marks, 10 min4 questions, 20 marks, 10 min

 Define “endianness” in your own words

 List advantages and disadvantages of linked lists
vs. M2 arrays

 Declare a circular, doubly-linked (bidirectional)
list that stores CARDINALs, and initialize it with a
single entry

 Draw a diagram illustrating a circular, doubly-
linked list with three entries, storing CARDINALs
0, 1, 2. Include all relevant fields and pointers,
and indicate any NIL pointers

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 33

Quiz ch12 answers: #1-2Quiz ch12 answers: #1-2

 Define “endianness” in your own words

● Ordering of bytes within a word
 e.g., “1A 2B 3C 4D” big-endian =

“4D 3C 2B 1A” little-endian

 List advantages and disadvantages of linked lists
vs. M2 arrays

● Linked-lists: dynamic, resizable, insert near
beginning is faster

● Arrays: built-in, easier to use, no worries about
memory leaks or dereferencing NIL pointers

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 44

Quiz ch12 answers: #3-4Quiz ch12 answers: #3-4

TYPE

CDList = POINTER TO CDListNode;

CDListNode = RECORD

data : CARDINAL;

prev : CDList;

next : CDList;

END;

VAR

myListHead, myListTail : CDList;

BEGIN

NEW (myListHead);

myListHead^ :=
CDListNode {0,
myListHead,
myListHead};

myListTail := myListHead;

0 np 1 np 2 np
head

tail

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 55

Review of last timeReview of last time

 Object-oriented programming:

● Procedural vs. OO
● Objects and messages
● Methods and attributes

 Class interface

● Classes and instances

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 66

Example of OO terminologyExample of OO terminology

 Tell our dog Fido to fetch a stick:

fido.Fetch (theStick);

● Dog is the class (type of object)
● fido is the instance (variable of given type)
● Fetch() is a method (procedure)

 theStick is a parameter to the method
 theStick is itself an object

 Dogs may also have attributes: color, owner, etc.

fido.color := brown;

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 77

Constructors and factoriesConstructors and factories

 An object factory is an abstract concept
describing the process of creating a new object

● In M2: NEW()
● Classes have factories to churn out new

instances: create and initialize
 Constructors are functions run

automatically upon creation
of a new object

 e.g. Doubly-linked list example

 e.g. Default color of new Dog

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 88

InheritanceInheritance

 Classes (object types) may also be derived from
other classes

● Subclasses inherit everything from parents
● May also add their own methods/attributes

 Both fido and cleo can
Greet(), but cleo won't
Fetch()

● Subclass vs. instance:
 We say, “fido is a Dog”, but
 “A Dog is a kind of Pet”

Dog
 Fetch()

Cat
 Purr()

Pet
 Greet()

subclasssubclass

fido cleo

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 99

Overriding and virtual functionsOverriding and virtual functions

 A subclass can override a method in
the parent class by redefining it

● Parent's version is hidden
● Parent is also called superclass

 In fact, the parent need not even
have a body for the method:

● Virtual function (or method)
● Just declares the name and how to invoke

 Polymorphism: all Pets can Greet(), but Dogs
Greet() differently from Cats

Dog
 Fetch()
 Greet()

Cat
 Purr()

 Greet()

Pet
 Greet()

fido cleo

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 1010

Summary of OOSummary of OO

 ADT-oriented rather than action-oriented

● Everything is an object

 Encapsulate everything you need to use an ADT
within its object class definition

 Action happens by passing messages to objects

● Objects define interfaces: how to use

 Classes can inherit from other classes

● And override and/or add to inherited stuff

 Keywords: object, procedural vs. OO, message,
method, interface, attribute, instance, factory,
class, inheriting, overriding, virtual function

5 Dec 20055 Dec 2005CMPT 14x: ch19 (extra)CMPT 14x: ch19 (extra) 1111

TODO itemsTODO items

 Lab 10 due today/Tues/Wed: §11.10 #(25 / 30)

 Paper due on Wed!

 Final exam: Wed 14Dec 2-4pm here

