
§1.6.5-§2.1: Software Abstractions §1.6.5-§2.1: Software Abstractions
and Control Structuresand Control Structures

11 Sep 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

devo

● Quiz ch1 today

8 Sep 20068 Sep 2006CMPT 14x: 1.1-1.7CMPT 14x: 1.1-1.7 22

AnnouncementsAnnouncements

 ACM programming competition:

● Qualifier rounds @SFU 16Sep and 23Sep
● World finals in Hawaii if we make it!
● Free pizza after the qualifier rounds
● C/C++/Java on Linux (vi/emacs)
● Our team last year nearly won top prize in CCCU

competition
● Register before Wed 13Sep with Alma:

Alma.Barranco@twu.ca

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 33

Review from 1.1-1.6Review from 1.1-1.6

 Tools, toolsmiths

 WADES

 Atomic vs. compound data (examples?)

 Data types (examples?)

● What's the difference: 5, 5.0, '5', (5), {5}

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 44

Quiz ch1Quiz ch1

 Get out a blank sheet of paper

 In the top right corner, write

● Your name
● Student ID#
● CMPT14x Quiz 1
● Today's date (11 Sep 2006)

 Number your answers and provide short answers as
best you can

 Closed book, closed notes, closed laptops/calcs

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 55

Quiz ch1 Quiz ch1 (5 questions, 20 marks, 10 minutes)(5 questions, 20 marks, 10 minutes)

 Copy this sentence and fill in the blanks:

● “Computers are t____, and
computer scientists are t_________.”

 What are the five steps of top-down problem solving?
● (okay if you don't get exact words; write the concepts)

 Describe two compound data types.

 What's the difference between 3, 3.0, and “3.0”?
Explain.

 What does this evaluate to in Python: 7 / 3

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 66

Quiz chapter 1: solutions (#1-2)Quiz chapter 1: solutions (#1-2)

 “Computers are tools, and (2)
computer scientists are toolsmiths.” (2)

 Five steps of top-down problem solving: (5)

● Write everything down
● Apprehend the problem
● Design a solution
● Execute your plan
● Scrutinize the results

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 77

Quiz chapter 1: solutions (#3-5)Quiz chapter 1: solutions (#3-5)

 Compound types: set, tuple (2+2)
● Also ok: aggregate, array, list, dictionary, hash

 3, 3.0, “3.0”: difference is type: (2)

● 3 is integer type (int) (1)
● 3.0 is float type (a.k.a. Real) (1)
● “3.0” is string type (str) (1)

 7 / 3 >>> 2 (2)

● (integer division)

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 88

What's on for today (§1.6.5 - §2.1)What's on for today (§1.6.5 - §2.1)

 Variables and constants

 Expressions and precedence

 Logical operators

 Hardware abstractions

 Software abstractions: levels of translation

 Control/structure abstractions

 Pseudocode

 Library functions

8 Sep 20068 Sep 2006CMPT 14x: 1.1-1.7CMPT 14x: 1.1-1.7 99

Variables and constantsVariables and constants

 A constant's value remains fixed: e.g., π, e, 2

 A variable's value may change: e.g., x, numberOfApples

 We can assign new values to variables

● numberOfApples = 12

● numberOfApples = numberOfApples – 1

 But not to constants

● π = 3.0 (don't want to do this!)

 In Python, there is no way to force a name to be constant

● Convention: use ALLCAPS for names that are intended to
be constant

8 Sep 20068 Sep 2006CMPT 14x: 1.1-1.7CMPT 14x: 1.1-1.7 1010

ExpressionsExpressions

 A combination of data items with appropriate operators
is called an expression

 Expressions are evaluated to obtain a single numeric
result

● 15 + 9 + 11 + 2 ------evaluation--->>> 37

 Operators may evaluate to a different type than their
operands:

● 22.1 > 15.0:
What is the type of the operands?
What is the type of the result?

8 Sep 20068 Sep 2006CMPT 14x: 1.1-1.7CMPT 14x: 1.1-1.7 1111

Logical operatorsLogical operators

 Logical operators are operators on the bool type:

● GodLovesMe = True

● ILoveGod = False

 not: flips True to False and vice-versa

● not GodLovesMe >>> False

 and: evaluates to True if both operands are True

● GodLovesMe and ILoveGod >>> False

 or: evaluates to True if at least one operand is True

● GodLovesMe or ILoveGod >>> True

8 Sep 20068 Sep 2006CMPT 14x: 1.1-1.7CMPT 14x: 1.1-1.7 1212

Operator PrecedenceOperator Precedence

 How would you evaluate this?

● 5 + 4 * 2
● (5 + 4) * 2 >>> 18: Addition first
● 5 + (4 * 2) >>> 13: Multiplication first

 Precedence is a convention for which operators get
evaluated first (higher precedence)

● Usually multiplication has higher precedence than
addition

 When in doubt, use parentheses!

8 Sep 20068 Sep 2006CMPT 14x: 1.1-1.7CMPT 14x: 1.1-1.7 1313

Expression compatibilityExpression compatibility

 5 + True doesn't make sense: incompatible types

 What about 5(int) + 2.3(float)?

● Works because the two types are expression
compatible

 The “+” operator is overloaded:

● It works for multiple types: both int and float

 It turns out that in Python, 5+True does evaluate:

● 5+True >>> 6
(interprets True as 1 and False as 0)

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 1414

Hardware abstractionsHardware abstractions

 Generally, most computers have these basic hardware
components:

● Input
● Memory
● Processing
● Control
● Output

 Together with the software, the environment presented
to the computer user by these is the virtual machine

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 1515

Software abstractionsSoftware abstractions

 Instructions: basic commands to computer

● e.g., ADD x and y and STORE the result in z

 Programming language: set of all available instructions

● e.g., Python, C++, machine language

 Program: sequence of instructions

● e.g., your “Hello World” program

 Software: package of one or more programs

● e.g. Microsoft Word, Microsoft Office

 Operating system: software running the computer: provides
environment for programmer

● e.g., Windows XP, Mac OSX, Linux, etc.

Python

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 1616

Programming is translationProgramming is translation

Idea in head

Design on paper

Python code

Assembly

Machine code

designer

coder
compiler

assembler

??

Libraries linker

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 1717

Control abstractionsControl abstractions

 Sequence: first do this; then do that

 Selection (branch): IF ... THEN ... ELSE ...

 Repetition (loop): WHILE ... DO

 Composition (subroutine): call a function

 Parallelism: do all these at the same time

 These are the basic building blocks of program control
and structure

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 1818

PseudocodePseudocode

 Pseudocode is sketching out your design

● General enough to not get tied up in details
● Specific enough to translate into code

 Use the five control abstractions

 Usually several iterations of pseudocode, getting less
abstract and closer to real code

 Don't worry about syntax; worry about semantics

● Repetition can be done with WHILE ... DO ...
or LOOP ... UNTIL:

● Similar semantics; different syntax

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 1919

Example pseudocode: swapExample pseudocode: swap

 Problem: swap the values of x and y

 Initial solution:

● x <--- y
● y <--- x

 Will this work?
 Try again:

● temp <--- x
● x <--- y
● y <--- temp

x
y

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 2020

Example pseudocode: add 1..20Example pseudocode: add 1..20

 Problem: add the integers between 1 and 20

 Initial solution:

● Initialize sum to 0
● Initialize counter to 1
● Repeat:

 Add counter to sum
 Add one to counter

● Until counter = 20

 Will this work?

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 2121

Example: add 1..20 (second try)Example: add 1..20 (second try)

 Try again:

● Initialize sum to 0
● Initialize counter to 1
● Repeat:

 Add counter to sum
 Add one to counter

● Until counter = 21

 Alternate version:

● Initialize sum to 0
● Initialize counter to 1
● While counter <21,

repeat:
 Add counter to sum
 Add one to counter

 Same semantics, different syntax

 Top-of-loop test vs. bottom-of-loop test

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 2222

Pseudocode: you try (group effort!)Pseudocode: you try (group effort!)

 Problem: print the largest of a sequence of numbers

● Set Curmax to negative infinity

● Loop:

 Select next number:
 See if it's bigger than curmax:
 If it is, set it as new curmax
 Repeat until no more numbers

● Print curmax

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 2323

Importing library functionsImporting library functions

 Library functions are building blocks:

● Tools that others wrote that you can use

 Functions are grouped into libraries:

● If you want to use a pre-written function, you need
to specify which library to import it from

import math

math.sqrt(2) >>>1.4142135623730951

math.pow(3, 5) >>>243.0

math.pi >>>3.1415926535897931

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 2424

Review of today (1.8-2.1)Review of today (1.8-2.1)

 Expressions and precedence

 Logical operators

 Five abstract components of hardware

 Software: instructions, languages, programs, operating
system

 Designer -> coder -> compiler -> assembler + linker

 Five control/structure abstractions of programs

 Pseudocode

 Importing library functions

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 2525

Writeups for Labs 1-2 Writeups for Labs 1-2 (L1 due next wk)(L1 due next wk)

 Full writeups required starting with Lab3

 Labs1-2 can have short writeup:

● Design (10 marks)
 Name, student#, CMPT14x, lab section, Lab#1, date
 Statement of the problem
 Discussion of solution strategy

● Code (30 marks)
 Name, etc. again in code header
 Well-commented code, formatted and indented

● Output (10 marks)
 A couple runs with different input

11 Sep 200611 Sep 2006CMPT 14x: 1.6.5 - 2.1CMPT 14x: 1.6.5 - 2.1 2626

TODO itemsTODO items

 Go to Neu9 computer lab:

● Make sure you can login
● Python/IDLE intro on course www (due Wed)

 Nothing to hand in on this intro

 Homework due next class (Wed):

● §1.11 # 25, 31, 40

 Reading: through §2.2 for Wed

 Lab1 due next week MTW (in lab section)

 Remember your quiet time journals

