
§§2.3-2.4: Problem Solving,2.3-2.4: Problem Solving,
Documentation, StyleDocumentation, Style

14 Sep 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● devo

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 22

Review of §2.2, 2.5, 2.11Review of §2.2, 2.5, 2.11

 Components of a baby Python program

 Modules

 Library tools (what are some we know already?)

 Literals, identifiers and reserved words (examples?)

 Strings, quoting, newlines

 Statically-typed vs. dynamically-typed

 Declaring and initializing variables
● (what is needed in C? In Python?)

 Keyboard input

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 33

Follow-up notes from yesterdayFollow-up notes from yesterday

 Static typing = strong typing
Dynamic typing = weak typing

 print “hello”,

● No newline, but still a space after “hello”

● For more control, import sys and use
sys.stdout.write()

 Note the updated list of allowable Python constructs
on the course website:

http://cmpt14x.seanho.com/python_constructs.html

http://cmpt14x.seanho.com/python_constructs.html

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 44

What's on for today (§2.3-2.4)What's on for today (§2.3-2.4)

 Steps to problem solving: WADES in more detail

 Documentation

● External documentation: design, manuals

● Internal documentation: comments, docstrings

 Style guidelines

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 55

Steps to solving a problemSteps to solving a problem

 11 steps expanding upon WADES:

 Analyze the problem

 Plan a solution

 Write down your data tables and I/O

 Refine your solution (several times)

 Execute your plan (code) and evaluate the results

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 66

Analyze the problemAnalyze the problem

 Step 1: Write the problem out

● “Write a program that prints out a user-specified
number of hash marks (#).”

 Step 2: Ask whether a computer is appropriate

● Other ways to solve the problem?

 Step 3: Rewrite the problem in your own words

● Given: number of hash marks to print

● To do: print hash marks

● Result: a string of hash marks, e.g., #######

● Formula: none needed

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 77

Plan and refine a solutionPlan and refine a solution

 Step 4: Re-use previous work where possible

● Our program has input and output; in some
languages (not Python), we need I/O libraries.

 Step 5: Break the problem into smaller steps

● Input: read in desired number of hash marks

● Computation: none

● Output: print out hash marks

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 88

Further refinementsFurther refinements

 Second refinement:
● Input:

 Ask user for desired number of hash marks
 Input response and assign to a cardinal variable

● Computation:

 Initialize a cardinal counter to zero
● Output:

 While the counter is less than the desired number of
hash marks:

● Print a hash mark
● Increment the counter

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 99

Data tables and I/OData tables and I/O

 Step 6: List all variables and imports (data table)

● Variables: numHashes, counter (int)

● Imports: none

 Step 7: List required input (precondition) and expected
output (postcondition)

● Input: An int ≥ 0, e.g. 6

● Output: A string of hashes, e.g. “######”

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1010

Refining the solutionRefining the solution

 Step 8: Pseudocode

● Print “How many hashes do you want printed?”

● Read user input into numHashes

● counter <---- 0

● While (counter < numHashes)
 Print “#”
 counter <----- counter + 1

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1111

Write the Python codeWrite the Python code

 Step 9: Python code (syntax matters here)
● ” ” ” Print a bunch of hashes.

●

● Nellie Hacker, CMPT140

● ” ” ”

● numHashes = input(“How many hashes? ”)

● counter = 0

● while (counter < numHashes):

 print “#”, # no newline
 counter = counter + 1

● print

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1212

Execution and evaluationExecution and evaluation

 Step 10: Compile, link, run

● First run:
 How many hashes do you want? 4
 ####

● Second run:

 How many hashes do you want? 7
 #######

 Step 11: Check against specifications

● Does program print the right number of hashes?
No one-off errors?

● What about weird input: 0, -1, 120, 5.3, abc?

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1313

DocumentationDocumentation

 Document your thinking at every step,
even the ideas that didn't work!

● Programmer's diary: log of everything

 External documentation: outside the program
● User manual:

 What user input is required

 What the user should expect the program to output

 No details about program internals

 Internal documentation: within the program
● Descriptive variable/module names

● Comments in the code

● Online help for the user

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1414

Examples of internal documentationExamples of internal documentation

 Good variable names: numHashes
● Bad variable names: x, num, i

 Comments: # in Python (to end of line)
● # loop numHashes times

● while (counter < numHashes):

 print “#”, # no newline
 counter = counter + 1

 Online help:
● “Enter 'h' for online help.”

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1515

CommentsComments

 Explain the “why”, not the “what”:

● Bad: x = x + 1 # increment x

● Good: x = x + 1 # do next hashmark

 Keep comments up-to-date!

● Incorrect comments are worse than no comments

 Comments are no substitute for external
documentation

● Still need a separate design doc, pseudocode, user
manual, etc.

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1616

DocstringsDocstrings

 Python convention is to create a docstring at the top of
every module, function, class, etc.:
● ” ” ” Print a bunch of hashes.

Nellie Hacker, CMPT140
” ” ”
numHashes = input(“How many hashes? ”)
. . .

 Triple-quotes: this is a string, not a comment

 First line is a short summary

 Second line is blank, then detailed description

 Automated Python tools read docstrings to help you organize
your code
● More info: http://www.python.org/dev/peps/pep-0257/

http://www.python.org/dev/peps/pep-0257/

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1717

Style conventionsStyle conventions

 Not hard-and-fast rules, but flexible conventions that make
code easier to read and understand

 Variable names: numHashes

● Flexible, but I prefer no underscores, and capitalize each
word (“CamelCase”)

● First letter is lowercase

 File/module names: helloworld.py

● Short, all lowercase, no underscores

 Function names: print_hashes()

● lowercase, command predicate, underscores
 More details: http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1818

Review of today (§2.3-2.4)Review of today (§2.3-2.4)

 Steps to problem solving: WADES in more detail

 Documentation

● External documentation: design, manuals

● Internal documentation:

 Comments
 Docstrings

 Style guidelines

 (see bankinterest.py example)

14 Sep 200614 Sep 2006CMPT 14x: §2.3-2.4CMPT 14x: §2.3-2.4 1919

TODO itemsTODO items

 Homework due tomorrow (Fri):

● §1.11 # 35

 Reading: through §2.10 for Fri

 Quiz ch2 next Mon

 Lab 1 due next MTW in lab section

● Short writeup ok

