
§§3.4-3.10, 5.4:§§3.4-3.10, 5.4:
while and for loopswhile and for loops

20 Sep 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● HW03 due today
● Quiz ch2 back

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 22

AnnouncementsAnnouncements

 Class cancelled tomorrow, Thursday 21Sep

 Python 2.5 has been released; we won't use it

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 33

Review of last time (§3.1-3.8)Review of last time (§3.1-3.8)

 Selection: if, if..else.., if..elif..else

 Loops: while

 Sentinel variables

 Loop counters

 Using mathematical closed forms instead of
loops

 abs(), += etc., string.capitalize()

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 44

What's on for today (§3.4-3.10, 5.4)What's on for today (§3.4-3.10, 5.4)

 String concatenation (+), repetition (*)

 Qualified import

 while loops: continue, break, else

 Common mistakes in loops

 for loops

 range()

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 55

String concatenation, repetitionString concatenation, repetition

 The plus operator (+) is overloaded to work with
strings: concatenation

 “Hello” + “World!” ---> “HelloWorld!”

● Overloading is when one operator or function
can do different things depending on the type
of its arguments:
 2 + 3 --> integer addition
 2 + 3.0 --> float addition
 “A” + “B” --> string concatenation

 Python also has string repetition:
 “Hi!” * 3 --> “Hi!Hi!Hi!”

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 66

String concatenation vs. printString concatenation vs. print

 print converts each of its arguments to a string,
and puts spaces between them:

 print “Hello”, “dear”, “World!”
● ---> Hello dear World!

 String concatenation doesn't insert spaces:
 print “Hello” + “dear” + “World!”

● ---> HellodearWorld!

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 77

Qualified importQualified import

 The usual way to import a library:
import string

string.capitalize(“Hello!”)

 Import individual functions from a library:
from string import capitalize

capitalize(“Hello!”)

 Or import an entire library (don't do this):
from string import *

capitalize(“Hello!”)

 We'll learn later about namespaces

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 88

while loops: continuewhile loops: continue

 You can prematurely go to the next iteration of a
while loop by using continue:

 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● continue
● print counter,

● Output:
 1 2 4 5

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 99

while loops: breakwhile loops: break

 You can quit a while loop early by using break:
 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● break
● print counter,

 Output:
 1 2

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1010

while loops: elsewhile loops: else

 The optional else clause of a while loop is
executed when the loop condition is False:

 counter = 0
 while counter < 5:

● counter += 1
● print counter,

 else:
● print “Loop is done!”

 Output:
 1 2 3 4 5 Loop is done!

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1111

while loops: break skips elsewhile loops: break skips else

 If the loop is exited via break, the else clause is
not performed:

 counter = 0
 while counter < 5:

● counter += 1
● if counter == 3:

● break
● print counter,

 else:
● print “Loop is done!”

 Output:
 1 2

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1212

Common errors with loopsCommon errors with loops

 Print squares from 12 up to 102:
 counter = 0
 while counter < 10:

● print counter*counter,
 What's wrong with this loop?

 Always make sure progress is being made in the
loop!

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1313

Common errors with loopsCommon errors with loops

 Count from 1 up to 10 by twos:
 counter = 1
 while counter != 10:

● print counter,
● counter += 2

 What's wrong with this loop?
How would you fix it?

 counter = 1
 while counter < 10:

● print counter,
● counter += 2

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1414

Common errors with loopsCommon errors with loops

 Count from 1.1 up to 2.0 in increments of 0.1:
 counter = 1.1
 while counter != 2.0:

● print counter,
● counter += 0.1

 Seems like it should work, but it might not due to
inaccuracies in floating-point arithmetic

 counter = 1.1
 while counter < 2.0:

● print counter,
● counter += 0.1

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1515

for loopsfor loops

 Since many while loops are counting loops, the for loop is
an easy construct that prevents many of these errors

 Syntax:
 for target in expression list :

● Statement sequence

 Example:
 for counter in (0, 1, 2, 3, 4):

● print counter,

● Output:
 0 1 2 3 4

 for loops can also take an else sequence, like while loops

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1616

range()range()

 The built-in function range() produces a list
suitable for use in a for loop:

 range(10) ----> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 Note 0-based, and doesn't include end of range

● Specify starting value:
 range(1, 10) ----> [1, 2, 3, 4, 5, 6, 7, 8, 9]

● Specify increment:
 range(10, 0, -2) ----> [10, 8, 6, 4, 2]

 Technically, range() returns a list (mutable), rather than a
tuple (immutable). We'll learn about lists and mutability
later.

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1717

for loop examplesfor loop examples

 Print squares from 12 up to 102:
 for counter in range(1, 10):

● print counter * counter,
 for loops can iterate over other lists:

 for appleVariety in (“Fuji”, “Braeburn”, “Gala”):
● print “I like”, appleVariety, “apples!”

 Technically, the for loop uses an iterator to get the next
item to loop over. Iterators are beyond the scope of
CMPT140/145.

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1818

Review of today (§3.4-3.10, 5.4)Review of today (§3.4-3.10, 5.4)

 String concatenation (+), repetition (*)

 Qualified import

 while loops: continue, break, else

 Common mistakes in loops

 for loops

 range()

20 Sep 200620 Sep 2006CMPT14x: §3.4-3.10, 5.4CMPT14x: §3.4-3.10, 5.4 1919

TODO itemsTODO items

 Quiz: ch3 on Mon

 Lab2 next week: §3.14 # 36 and 45

 Reading: through §4.7 for Fri

 Class cancelled tomorrow

