
§5.1-5.3: Enumerations§5.1-5.3: Enumerations

28 Sep 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● devo

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 22

Review from last time (§4.8-4.10)Review from last time (§4.8-4.10)

 Some debugging tips

 A fun example: ROT13
● ord(), chr(), string indexing, len()
● Stub program

 Recursion

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 33

Addendum: iterating a stringAddendum: iterating a string

 Iterating through a string:
for idx in range(len(myString)):

myChar = myString[idx]

● Shorthand in Python:
(can treat strings as lists of characters)

for myChar in myString:
myChar ...

● For example:
for myChar in "Hello World!":

print myChar

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 44

What's on for today (§5.1-5.3)What's on for today (§5.1-5.3)

 Call stack, backtrace

 Abstract Data Types
● Type hierarchy

 Enumerations

 Arrays

 Lists

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 55

The call stackThe call stack

 When a program is running, an area
of memory is set aside to store local
variables, the state of the program,
etc.

 When a procedure is invoked, the
calling context is saved, and a new
chunk of memory is allocated for the
procedure to use: its stack frame

 When the procedure finishes, its
frame is released and control goes
back to the calling context

 The stack pointer keeps track of what
frame is currently running

__main__

calc_volume()

math.sin()

stack
pointer

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 66

Call stack for recursive functionsCall stack for recursive functions

def factorial(n):

"""Compute the factorial of a
positive integer."""

if n == 0:

return 1
else:

return n*factorial(n-1)

 If there were any local variables,
each frame would have its own
instance of the local variables

 When an error (exception)
happens, IDLE shows a
backtrace: part of the call stack __main__

factorial(3)

factorial(2)

stack
pointer

factorial(1)

factorial(0)

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 77

Another recursive ex.: FibonacciAnother recursive ex.: Fibonacci

 Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34,...
● Each number is the sum of the two previous
def fibonacci(n):

"""Compute the n-th Fibonnaci number.

pre: n should be a positive integer.

"""

if n == 0 or n == 1: # base case

return 1
else: # inductive step

return fibonacci(n-2) + fibonacci(n-1)
● Note: very inefficient algorithm!

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 88

Abstract Data TypesAbstract Data Types

 Recall the categorization of
● Atomic vs. Aggregate (compound) types

 Some examples of atomic data types:
● Real (float), integer (int), Boolean (bool)
● Character (if the language has such a type)

 Some examples of aggregate data types:
● Arrays, tuples, dictionaries, records/structs

 Abstract Data Type (ADT):
● Details of implementation are hidden from

user (how to represent a float in binary form?)

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 99

M2 type hierarchy (partial)M2 type hierarchy (partial)

 Atomic types

● Scalar types

 Real types (REAL, LONGREAL)

 Ordinal types (CHAR)
● Whole number types (INTEGER, CARDINAL)
● Enumerations (§5.2.1) (BOOLEAN)
● Subranges (§5.2.2)

 Structured (aggregate) types

● Arrays (§5.3)

 Strings (§5.3.1)
● Sets (§9.2-9.6)

● Records (§9.7-9.12)

 Also can have user-defined types

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 1010

Python type hierarchy (partial)Python type hierarchy (partial)

 Atomic types

● Numbers

 Integers (int, long, bool): 5, 500000L, True

 Reals (float) (only double-precision): 5.0

 Complex numbers (complex): 5+2j

 Container (aggregate) types

● Immutable sequences

 Strings (str): "Hello"

 Tuples (tuple): (2, 5.0, "hi")
● Mutable sequences

 Lists (list): [2, 5.0, "hi"]
● Mappings

 Dictionaries (dict): {"apple": 5, "orange": 8}

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 1111

Enumeration types in M2 (also C)Enumeration types in M2 (also C)

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
today : DayName;

BEGIN
today := Mon;

 We could have used CARDINALs instead
(and indeed the underlying implementation does)
● But the logical semantic of today's type is a

DayName type, not a CARDINAL
 Can be thought of as Sun=0, Mon=1, Tue=2, ...

 No explicit enumeration scheme in Python

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 1212

ArraysArrays

 In M2/C, arrays are fixed-length indexed
containers for objects all of the same type:

TYPE

WageArray = ARRAY [0 .. 4] OF REAL;
VAR

nelliesWages : WageArray;
BEGIN

nelliesWages [1] := 25.75;

 Note that we had to declare:
● The length of the array
● The type of its contents

25.75

nelliesWages:

0 1 2 3 4

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 1313

Using arraysUsing arrays

 Accessing beyond the end of an array is an
out-of-bounds error:
● If nelliesWages has length 5, then nelliesWages[17]

gives an error

 Assigning a whole array usually just makes an
alias (pointer) to the same array:

joshsWages = nelliesWages;

nelliesWages[1] = 30.7; (* also affects joshsWages *)

 Comparison usually doesn't work:
joshsWages < nelliesWages (* doesn't make sense *)

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 1414

Lists in PythonLists in Python

 Python doesn't have a built-in type exactly like
arrays, but it does have lists:

nelliesWages = [0.0, 25.75, 0.0, 0.0, 0.0]

nelliesWages[1] # returns 25.75

 Under the covers, Python often implements lists
using arrays, but lists are more powerful:
● Can change length dynamically
● Can store items of different type
● Can delete/insert items mid-list

 For now, we'll treat Python lists as arrays
● Don't use the advanced functionality yet

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 1515

Using listsUsing lists

 We know one way to generate a list: range()
range(10) # returns [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 Or assign directly:
myApples = ["Fuji", "Gala", "Red Delicious"]

 We can iterate through a list:
for idx in range(len(myApples)):

print "I like", myApples[idx], "apples!"

 Even easier:
for apple in myApples:

print "I like", apple, "apples!"

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 1616

Review of today (§5.1-5.3)Review of today (§5.1-5.3)

 Call stack, backtrace

 Abstract Data Types
● Type hierarchy

 Enumerations

 Arrays

 Lists

28 Sep 200628 Sep 2006CMPT14x: §5.1-5.3CMPT14x: §5.1-5.3 1717

TODOTODO

 Lab 03 due next MTW:
● M2 ch4 # (24 or 27 or 37)

 Quiz ch4-5 next Mon

 Read through M2 ch5 and Py ch8

 Midterm ch1-5 next week Fri 6Oct
● See sample midterm (with solutions)

under Fall 2005 CMPT14x homepage

http://twu.seanho.com/05fall/cmpt14x/exam1.html
http://twu.seanho.com/05fall/cmpt14x/exam1-key.html

