§5.9: Sieve of Eratosthenes (example of arrays)

2 Oct 2006 CMPT14x Dr. Sean Ho Trinity Western University • Quiz ch4-5 today

M lab (Edie) and W lab (Jenna): TAs will be out

Review last time (§5.5-5.10, Py ch8)

Python lists vs. M2/C arrays Lists as function parameters Multidimensional arrays/lists Python-specific list operations Membership (in) Concatenate (+), repeat (*) Delete (del), slice ([s:e]) • Aliasing vs. copying lists

Quiz ch4-5

Name two standard container (aggregate) types in Python.

- Name two operations/functions/properties that Python lists have that M2/C arrays do not.
- Write a Python function create_matrix(n_rows, n_cols) that returns a new matrix of the specified size.
 - Contents of the matrix don't matter
 - Docstring required!
 - Partial credit for pseudocode

Quiz ch4-5 answers: #1

Name two standard container (aggregate) types in Python.

- Immutable sequences
 - Strings (str): "Hello"
 - Tuples (tuple): (2, 5.0, "hi")
- Mutable sequences
 - Lists (list): [2, 5.0, "hi"]
- Mappings
 - Dictionaries (dict): {"apple": 5, "orange": 8}

Quiz ch4-5 answers: #2

Name two operations/functions/properties that Python lists have that M2/C arrays do not. Can change length dynamically Items need not all be same type Concatenate (+), repeat (*) List membership test (in) Insert, delete (del) List slice ([:])

6

Quiz ch4-5 answers: #3

Create a matrix:

 Use range() to create a 1D list, then
 Use range() to turn each element into a whole row: def create_matrix(n_rows, n_cols): """Create a new 2D list of given size. pre: n_rows, n_cols are integers > 0.

matrix = range(n_rows)
for row in range(n_rows):
 matrix[row] = range(n_cols)
return matrix

Problem statement: list primes

Problem: list all the prime numbers between 2 and some given big number.

- You had a homework that was similar: test if a given number is prime, and list its factors
- How did you solve that?
 - Procedure is_prime() (pseudocode):
 - Iterate for factor in 2 .. sqrt(n):
 - If (n % factor == 0), then
 - We've found a factor!

But this is wasteful: really only need to test prime numbers for potential factors

Listing all primes

We could tackle this problem by repeatedly calling is_prime() on every number in turn:
 for num in range(2, max):
 if is_prime(num) ...
 But this could be really slow if max is big

Sieve of Eratosthenes

The sieve works by a process of elimination: we eliminate all the non-primes by turn:

Prime sieve: pseudocode

 Create an array of booleans and set them all to true at first. (true = prime)

- 2) Set array element 1 to false. Now 2 is prime.
- 3) Set the values whose index in the array is a multiple of the last prime found to false.
- 4) The next index where the array holds the value true is the next prime.
- 5) Repeat steps 3 and 4 until the last prime found is greater than the square root of the largest number in the array.

Prime sieve: Python code

"""Find all primes up to a given number, using Eratosthenes' prime sieve.""" import math # sqrt size = input("Find all primes up to: ")

Initialize: all numbers except 0, 1 are prime
primeFlags = range(size+1) # so pF[size] exists
for num in range(size+1):
 primeFlags[num] = True

primeFlags[0] = False primeFlags[1] = False

Prime sieve: Python code (p.2)

Output
print "Your primes, sir/madam:",
for num in range(2, size+1):
 if primeFlags[num]:
 print num,

CMPT14x: §5.9

2 Oct 2006