
§6.5-6.10: Writing Library Modules§6.5-6.10: Writing Library Modules

12 Oct 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● Announcements

12 Oct 200612 Oct 2006CMPT14x: §6.5-6.10CMPT14x: §6.5-6.10 22

Review of §6.1-6.4Review of §6.1-6.4

 Working with files: open(), close()
● File handles / file objects

 Input: read(), readline(), readlines()

 Output: write(), flush()

 The file position pointer: seek(), tell()

 Standard I/O channels: sys.stdin, stdout, stderr

 Python standard math library

12 Oct 200612 Oct 2006CMPT14x: §6.5-6.10CMPT14x: §6.5-6.10 33

Addendum on files and pathsAddendum on files and paths

 Specifying file pathnames: use forward slash
 open('z:/directory/file.txt')

 Changing the current directory:
 import os
 os.chdir('z:/directory/')
 open('file.txt')

file:///z:/directory/

12 Oct 200612 Oct 2006CMPT14x: §6.5-6.10CMPT14x: §6.5-6.10 44

Library modules vs. programsLibrary modules vs. programs

 So far we've been writing Python programs
(e.g., helloworld.py)

 Our programs have used library modules
(e.g., import math)

 Libraries group related code for reuse (import)
● Only need to define cos() once
● Libraries are not intended to be executed

(called), unlike programs
 We can create our own libraries for others to use

12 Oct 200612 Oct 2006CMPT14x: §6.5-6.10CMPT14x: §6.5-6.10 55

Designing librariesDesigning libraries

 In creating a library, we need to decide what the
public interface is: how programs can use it

● Functions, types, constants, etc. for public use

● Think about pre-/post-conditions

 We can hide implementation details

● Certain functions may be
for internal use only

 Car: how to use it vs. how it works

● Owner's manual vs. shop manual

● A driver doesn't need to understand how the
engine works, variable valve timing/lift, etc.

12 Oct 200612 Oct 2006CMPT14x: §6.5-6.10CMPT14x: §6.5-6.10 66

Definition vs. implementation filesDefinition vs. implementation files

 In M2, each library has a definition file and an
implementation file:
● DEF: declares types and procedures

 Tells programs how to invoke its procedures
 No bodies to the procedures

● IMP: implements the procedures
 Parameter lists must match those in DEF file

 In C/C++, definition files are called header files
(.h, .H, .hpp)

 In Python, everything is in one .py file

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 77

Example: Fractions ADTExample: Fractions ADT

 Often modules are used to define abstract data
types: let's make a fraction type: fraction.py

 We can represent a fraction a/b internally as
tuple of integers: (a, b)

 Our fractions module will contain the fraction
type as well as all the procedures we need to use
variables of type fraction

 We want to hide the internal representation as
much as possible, so that a program using our
library thinks just in terms of the fraction ADT.

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 88

Basic fractions functionsBasic fractions functions

 Create a new fraction object:
def create(numer, denom):

"""Return a new fraction object.
Pre: numer and denom are ints; denom != 0.
"""
return (numer, denom) # a tuple

 Access the internal representation:
def get_n(frac):

"""Return the top of the fraction."""
return frac[0]

def get_d(frac):

"""Return the bottom of the fraction."""
return frac[1]

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 99

Accessor (set/get) functionsAccessor (set/get) functions

 Why have get_n() and get_d()?
Why not just access frac[0] and frac[1] directly?

 Want to hide the fact that our fractions are really
just tuples

 Future version could store fractions differently
● Then just change implementation of get_n()

and get_d()
● Public interface stays the same

 Can also protect against setting a
zero denominator

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1010

Library functions: invert(), mult()Library functions: invert(), mult()

 Swap numerator and denominator:
def invert(frac):

"""Return the reciprocal of the fraction."""
if get_n(frac) == 0:

return 1/0 # raise ZeroDivisionError
return (get_d(frac), get_n(frac))

 Multiply two fractions:
def mult(f1, f2):

"""Multiply f1 and f2. Doesn't cancel common factors."""
return (get_n(f1) * get_n(f2), get_d(f1) * get_d(f2))

 Divide?

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1111

Library functions: string()Library functions: string()

 Provide a way to pretty-print a fraction:
def string(frac):

"""Return a string representation of the fraction."""
return "%d / %d" % (get_n(frac), get_d(frac))

 Library: http://twu.seanho.com/python/fraction.py

http://twu.seanho.com/python/fraction.py

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1212

Using our libraryUsing our library

 Import our library:
● fraction.py must be in same directory

import fraction

 Create a couple fractions:
f1 = fraction.create(2,3)

f2 = fraction.create(6,7)

 Multiply them:
f3 = fraction.mult(f1, f2)

 Print the result:
print fraction.string(f3)

17 Oct 200517 Oct 2005CMPT 14x: 6.5-6.8CMPT 14x: 6.5-6.8 1313

Doing this the object-oriented wayDoing this the object-oriented way

 Object-oriented design is organized around the
data structure:
● Build up a suite of functions to use the ADT

 The “real” Python way of writing a fractions ADT
is to create a fractions class
● Classes are user-defined data types
● Can really hide implementation from user
● Functions are methods of the class

 e.g., myFile.read() is a method on file objects

 To see fractions done the OO way:
http://twu.seanho.com/python/thinkCS/app_b.html

http://twu.seanho.com/python/thinkCS/app_b.html

11 Oct 200611 Oct 2006CMPT14x: §6.1-6.4CMPT14x: §6.1-6.4 1414

TODO itemsTODO items

 HW06 due tomorrow: 6.11 #(4, 28)
● #28: show your Python program

 Lab05 due next week: 6.11 #(33/35)

 Quiz05 (ch6) on Mon

 CMPT140 Final in two weeks: W-Th 25-26Oct

