
§7.0-7.8: Applications:§7.0-7.8: Applications:
Caesar cipher, pseudo-randomCaesar cipher, pseudo-random

13 Oct 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● HW06 due today

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 22

Review of §6.5-6.10Review of §6.5-6.10

 Library modules:
● Public interface (header) vs.
● Private implementation
● Car: owner's manual vs. shop manual

 Defining an abstract data type

 Accessor (set/get) functions

 Using (import) our library

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 33

What's on for today (§7.0-7.8)What's on for today (§7.0-7.8)

 Strings: manipulating text
● Null-terminated strings
● Comparing strings

 Application: cryptography (substitution cipher)
● Creating a library for cryptography
● Library-internal helper functions

 Application: pseudo-random number generator
● Accessing global variables
● Assessing randomness

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 44

Null-termination in stringsNull-termination in strings

 In Python, strings are a basic type (immutable seq)

 But in M2/C, strings are fixed-len arrays of CHAR:
VAR myName : ARRAY [0..14] OF CHAR;

 But the array is not always completely filled:
myName := “AppleMan”;

 How to know where the string ends?

 Strings are null-terminated:
● The null character CHR(0) is added to the end
● Anything past the termination char is ignored

A p p l e M a n Ø

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 55

String comparisonString comparison

 In our ROT13 example, we checked if a character is a
lowercase letter:

if ord(ch) >= ord('a') and ord(ch) <= ord('z'):

 Python allows us to compare strings directly:

if ch >= 'a' and ch <= 'z':

 String objects even have a built-in method:

if ch.islower():

 String comparison is lexical:

'hiya' < 'hoya'

 If this weren't built-in, how would you implement
string comparison?

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 66

Cryptography exampleCryptography example

 Cæsar substitution cipher:
● Key: e.g., QAZXSWEDCVFRTGBNHYUJMKIOLP
● Cleartext: input text to encrypt
● Ciphertext: output encrypted text
● Encoding: replace each letter in source with

corresponding letter from code key
● Decoding: same, using the decode key

 ROT13 was an example of a substitution cipher
● Key: NOPQRSTUVWXYZABCDEFGHIJKLM

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 77

Write a Write a SubstitutionSubstitution cipher library cipher library

 What public interface do we want for the library?
def encode (src, key):

"""Encode the source string using the given codestring.
Returns the encoded string.
pre: src must be a string;
key must be a permutation of the 26 letters."""

def decode (src, key):
"""Decode the source string using the given codestring.
Returns the decoded string.
pre: src must be a string;
key must be a permutation of the 26 letters."""

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 88

Internal helper functionsInternal helper functions

 In the implementation it is handy to have some
helper functions for internal use:

def isalpha (ch):
"""Return true if ch is a letter."""

def alpha_pos (ch):
"""Return index of a letter in the range 0 .. 25"""

def decode_key (enckey):
"""Create a decode key from an encoding key"""

 How to implement these?
● isalpha() is built-in: ch.isalpha()

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 99

Implementing Substitution libraryImplementing Substitution library

 Main function to encode strings:
def encode(src, key):

"""Encode the source string using the given codestring.
Returns the encoded string.
pre: src must be a string;
key must be a permutation of the 26 letters.
"""
dst = ""
for ch in src:

if ch.isalpha():
dst += key[alpha_pos(ch)]

else:
dst += ch

return dst

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1010

Implementing decode()Implementing decode()

 Decoding is just encoding using a reverse key:
def decode (src, key):

"""Decode the source string using the given codestring.
Returns the decoded string.
pre: src must be a string;
key must be a permutation of the 26 letters.
"""
return encode(src, decode_key(key))

 Library: http://twu.seanho.com/python/substitution.py

 Testbed: http://twu.seanho.com/python/caesartest.py

http://twu.seanho.com/python/substitution.py
http://twu.seanho.com/python/caesartest.py

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1111

Application: Random numbersApplication: Random numbers

 A random number (from a uniform distribution) is
chosen such that every number within the range
is equally likely to be chosen:
● Uniform distribution on [0..1]

 Making things truly random (high entropy) is very
difficult!
● Hardware random-number generators:

 Measure radioactive decay of isotopes
 Brownian motion of particles in a suspension (air)

● Software pseudo-random number generators

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1212

Pseudo-random number generatorPseudo-random number generator

 A pseudo-random number generator applies
some math operations to the last number
generated to get the next number
● Start with a seed number
● Hopefully it's “random enough”
● But really it's completely deterministic:

 If we start again with the same seed, we'll always
get the same sequence of “random” numbers

 e.g., seed=0.10: generates
● 0.72, 0.23, 0.19, 0.93, 0.54, 0.77, 0.11, ...

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1313

DEF: pseudo-random num libraryDEF: pseudo-random num library

 We only need one public procedure: Random()
def random ():

"""Returns a random float between 0 and 1."""

def init_seed (x):
"""Initialize the number generator seed."""

 init_seed provides a way for the user to manually
set the seed.

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1414

IMP: pseudo-random num libraryIMP: pseudo-random num library

"""Pseudo-random number generator.

Sean Ho

CMPT14x example 2006.

"""

from math import exp, log, pi

seed = 0 # persistent across calls to random()

def init_seed (x):

"""Initialize the number generator seed.
Accessor (set) function for seed."""
global seed # access global variable
seed = x

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1515

IMP: pseudorandom.py, cont.IMP: pseudorandom.py, cont.

def random ():

"""Returns a random float between 0 and 1."""
global seed # access global variable

Try to scramble up seed as much as possible
seed = seed + pi
seed = exp (7.0 * log (seed))

Only keep the fractional part, in range 0..1
seed = seed – int (seed)
return seed

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1616

Online test of PseudoRandomOnline test of PseudoRandom

 (demo in Python of PseudoRandomTest)
 Library:

http://twu.seanho.com/python/pseudorandom.py

 Evaluating “randomness”:
● Graphical evaluations: plot points (x,y) where

both coordinates are from Random()
● Check for dense spots, sparse spots in 1x1

square
● Python has graphics libraries, but that's

beyond the scope of this class

http://twu.seanho.com/python/pseudorandom.py

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1717

Review from today (§7.0-7.8)Review from today (§7.0-7.8)

 Strings: manipulating text
● Null-terminated strings
● Comparing strings

 Application: cryptography (substitution cipher)
● Creating a library for cryptography
● Library-internal helper functions

 Application: pseudo-random number generator
● Accessing global variables
● Assessing randomness

13 Oct 200613 Oct 2006CMPT14x: §7.1-7.8CMPT14x: §7.1-7.8 1818

TODO itemsTODO items

 Lab05 due next week: 6.11 #(33/35)

 Quiz05 (ch6) on Mon

 CMPT140 Final in two weeks: W-Th 25-26Oct

