§7.0-7.8: Applications:
Caesar cipher, pseudo-random

® HWO06 due today

13 Oct 2006

CMPT14x

Dr. Sean Ho

Trinity Western University

e
TRINITY
WESTER N
B INNERSITY

Review of §6.5-6.10

m Library modules:
Public interface (header) vs.
Private implementation
Car: owner's manual vs. shop manual
m Defining an abstract data type
m Accessor (set/get) functions
m Using (import) our library

iy
TRINITY

WESTERN

What's on for today (§7.0-7.8)

m Strings: manipulating text
Null-terminated strings
Comparing strings

m Application: cryptography (substitution cipher)
Creating a library for cryptography
Library-internal helper functions

m Application: pseudo-random number generator
Accessing global variables
Assessing randomness

e
TRINITY

WESTFRN

Null-termination in strings

® |[n Python, strings are a basic type (immutable seq)

m But in M2/C, strings are fixed-len arrays of CHAR:
VAR myName : ARRAY [0..14] OF CHAR;

m But the array is not always completely filled:
myName := “AppleMan’;

= How to know where the string ends?

m Strings are null-terminated:

The null character CHR(0) is added to the end

Anything_lpast the termination char is i?nored

|

o Alele[t]e[mafnfe] T T T]

2 TRINITY
CMPT14x: §7.1-7.8 13 Oct 2006

WESTFERN
W INIVERSITY

String comparison

® |[n our ROT13 example, we checked if a character is a
lowercase letter:

if ord(ch) >= ord('a’) and ord(ch) <= ord('z"):
®m Python allows us to compare strings directly:
if ch >="a"' and ch <="z"
® String objects even have a built-in method:
if ch.islower():
® String comparison is lexical:
'hiya' < 'hoya’
m |f this weren't built-in, how would you implement

string comparison?

iy
TRINITY

WESTERN

Cryptography example

m Caesar substitution cipher:
Key: e.g., QAZXSWEDCVFRTGBNHYUJMKIOLP
Cleartext: input text to encrypt
Ciphertext: output encrypted text

Encoding: replace each letter in source with
corresponding letter from code key

Decoding: same, using the decode key
m ROT13 was an example of a substitution cipher
Key: NOPQRSTUVWXYZABCDEFGHIJKLM

ahp
TRINITY

WESTFRN

Write a Substitution cipher library

®m What public interface do we want for the library?
def encode ():

Encode the source string using the given codestring.
Returns the encoded string.

pre: src must be a string;

key must be a permutation of the 26 letters.

(o (<Y ile [Yalo Yo [X():

Decode the source string using the given codestring.
Returns the decoded string.

pre: src must be a string;

key must be a permutation of the 26 letters.

¢
TRINITY
WESTERN

T INNERSITY CMPT14x: §7.1-7.8 13 Oct 2006

Internal helper functions

® [n the implementation it is handy to have some
helper functions for internal use:

def isalpha (ch):

""Return true if ch is a letter."™
def alpha_pos (ch):

""Return index of a letter in the range O .. 25™"
def decode_key (enckey):

"""Create a decode key from an encoding key™"

= How to implement these?
isalpha() is built-in: ch.isalpha()

¢
TRINITY
WVWESTFERN

Implementing Substitution library

®m Main function to encode strings:

def encode(src, key):
"""Encode the source string using the given codestring.
Returns the encoded string.

pre: src must be a string;
key must be a permutation of the 26 letters.

dst =""
for ch in src:
if ch.isalpha():
dst += key[alpha_pos(ch)]

else:
dst += ch
return dst
22 TRINITY
WESTERN CMPT14x: §7.1-7.8 13 Oct 2006

= LINIVERSITY

Implementing decode()

m Decoding is just encoding using a reverse key:

def decode (src, key):

"""Decode the source string using the given codestring.
Returns the decoded string.

pre: src must be a string;

key must be a permutation of the 26 letters.

return encode(src, decode_key(key))

®m Library: http://twu.seanho.com/python/substitution.py
m Testbed: http://twu.seanho.com/python/caesartest.py

iy
TRINITY
WESTERN

10

http://twu.seanho.com/python/substitution.py
http://twu.seanho.com/python/caesartest.py

Application: Random numbers

® A random number (from a uniform distribution) is
chosen such that every number within the range
is equally likely to be chosen:

Uniform distribution on [0..1]

m Making things truly random (high entropy) is very
difficult!

Hardware random-number generators:

+ Measure radioactive decay of isotopes
+ Brownian motion of particles in a suspension (air)

Software pseudo-random number generators

e
TRINITY

WESTFRN

11

Pseudo-random number generator

m A pseudo-random number generator applies
some math operations to the last number
generated to get the next number

Start with a seed number
Hopefully it's “random enough’

But really it's completely deterministic:

+ If we start again with the same seed, we'll always
get the same sequence of “random” numbers

m e.g., seed=0.10: generates
0.72, 0.23, 0.19, 0.93, 0.54, 0.77, 0.11, ...

e
TRINITY

WESTFRN

DEF: pseudo-random num library

m We only need one public procedure: Random()

def random ():
""Returns a random float between 0 and 1.""

def init_seed (X):
""Initialize the number generator seed.™"

m init_seed provides a way for the user to manually
set the seed.

¢
TRINITY
WVWESTFERN

13

IMP: pseudo-random num library

""Pseudo-random number generator.

Sean Ho
CMPT14x example 2006.

from math import exp, log, pi

seed =0 # persistent across calls to random()
def init_seed (x):

""Initialize the number generator seed.
Accessor (set) function for seed.""
global seed # access global variable
seed = x
g
TRINITY

WESTERN

T INNERSITY CMPT14x: §7.1-7.8 13 Oct 2006

IMP: pseudorandom.py, cont.

def random ():

208
TRINITY
WESTERN
W LINNERSITY

"""Returns a random float between 0 and 1."""
global seed # access global variable

Try to scramble up seed as much as possible
seed = seed + pi
seed = exp (7.0 * log (seed))

Only keep the fractional part, in range O..1

seed = seed - int (seed)
return seed

CMPT14x: §7.1-7.8 13 Oct 2006

15

Online test of PseudoRandom

m (demo in Python of PseudoRandomTest)

m Library:
http://twu.seanho.com/python/pseudorandom.py

m Evaluating “randomness”:

Graphical evaluations: plot points (x,y) where
both coordinates are from Random()

Check for dense spots, sparse spots in 1x1
square

Python has graphics libraries, but that's
beyond the scope of this class
sl

, == TDINITY
VWESTERN

16

http://twu.seanho.com/python/pseudorandom.py

Review from today (§7.0-7.8)

m Strings: manipulating text
Null-terminated strings
Comparing strings

m Application: cryptography (substitution cipher)
Creating a library for cryptography
Library-internal helper functions

m Application: pseudo-random number generator
Accessing global variables
Assessing randomness

e
TRINITY

WESTFRN

17

TODO items

m Lab05 due next week: 6.11 #(33/35)
® Quiz05 (ch6) on Mon
m CMPT140 Final in two weeks: W-Th 25-260ct

iy
TRINITY

WESTFRN

W INMFRSITY CMPT14x: §7.1-7.8 13 Oct 2006 18

