
§12.1-12.5: Pointers§12.1-12.5: Pointers

17 Nov 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● Wed Lab08 ok late

17 Nov 200617 Nov 2006CMPT14x: §12.1-12.5CMPT14x: §12.1-12.5 22

Review last time (Py tut §9.2)Review last time (Py tut §9.2)

 Namespaces

 Scope
● New names add to local scope
● Names outside local scope are read-only

 Assigning to them makes a local copy

● global command
 Backtracking: Knight's Tour

 Lab09 (cplx), HW10 (knight), Lab10 (M2)

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 33

What's on for today (12.1-12.5)What's on for today (12.1-12.5)

 Pointers (in Modula-2 and C)
● Creating pointers, dereferencing pointers
● Assignment compatibility
● Pointer arithmetic
● NIL (in C: NULL)

 Static vs. dynamic allocation of memory
● Activation records
● Stack, stack pointer

 Dynamic variables: NEW(), DISPOSE()

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 44

PointersPointers

 Values are stored in locations in memory

 These locations are accessed by their addresses,
which point to a spot in memory

 A pointer is a variable whose value is a memory
address:

VAR
applePtr : POINTER TO REAL;
apple : REAL;

BEGIN
apple := 5.0;
applePtr := SYSTEM.ADR (apple);

0x3e 5.0

applePtr apple

0x3e

0x3f

0x40

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 55

Dereferencing pointersDereferencing pointers

 The last example shows how to make a pointer:
VAR

applePtr : POINTER TO REAL;

apple : REAL;

BEGIN

apple := 5.0;

applePtr := SYSTEM.ADR (apple);

 How do we get at the memory pointed to?
applePtr^ := 4.0; (* same as apple := 4.0 *)

 (C syntax: *applePtr)

● The “hat” operator ^ is called the
dereferencing operator

In C:

float apple;

float* applePtr;

apple = 5.0;

applePtr = &apple;

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 66

Operations on pointersOperations on pointers

 Different pointer types are not compatible
● But can always cast from one type to another:

float* applePtr;

int* pearPtr;

applePtr = (float*) pearPtr;

 NIL points to nothing at all
● Handy for initializing pointers: ptr1 := NIL;
● Dereferencing NIL raises sysException
● In C, use NULL (which is just 0)

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 77

Pointers and C arraysPointers and C arrays

 An array in C is really just a pointer to a location
in memory that stores consecutive entries of the
array:

float appleSizes[4];

appleSizes[0] = 2.5;

● Indexing into the array is really done by adding
to the pointer to the head of the array:

appleSizes[2]
 Is the same as:

*(appleSizes + 2)

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 88

Pointers and call-by-referencePointers and call-by-reference

 Pointers are how call-by-reference is done in C:
int increment (int* x) { /* takes a pointer to an int */

*x = *x + 1;
return *x;

}

int x;

x = 5;

increment (&x); /* pass a pointer to x */

 In C++, can specify in the function definition:
int increment (int &x) { /* call-by-reference */

x = x + 1;
increment (x);

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 99

Static vs. dynamic memoryStatic vs. dynamic memory

 Static variables are allocated at the beginning of
the program run
● Their size in memory is fixed at compile-time
● Variables named in declaration section

 Dynamic variables are allocated during the
running of a program
● May also be deallocated during program
● Size need not be predetermined
● Reference them via pointers

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 1010

Dynamic variablesDynamic variables

 You can make your own dynamically allocated
variables, using NEW() and DISPOSE():

VAR

applePtr : POINTER TO REAL;
BEGIN

NEW (applePtr);

 Allocates memory for a REAL, and stores the
address in applePtr

DISPOSE (applePtr);

 Deallocates the memory, and sets applePtr to NIL

● Dynamic variables are in the heap:
 Open space for program to allocate/deallocate

● If heap is full, NEW sets pointer to NIL

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 1111

A caution about pointersA caution about pointers

 Pointers are a powerful tool and a quick way to
shoot yourself in the foot:

VAR
applePtr : POINTER TO REAL;

BEGIN
applePtr^ := 5.0; (* yipes! *)

● Uninitialized pointer could point to anywhere
in memory: dereferencing it can potentially
modify any accessible memory!
 Can crash older Windows; core dump in Unix

24 Nov 200524 Nov 2005CMPT 14x: 12.1-12.5CMPT 14x: 12.1-12.5 1212

Review of today (12.1-12.5)Review of today (12.1-12.5)

 Pointers (in Modula-2 and C)
● Creating pointers, dereferencing pointers
● Assignment compatibility
● Pointer arithmetic
● NIL (in C: NULL)

 Static vs. dynamic allocation of memory
● Activation records
● Stack, stack pointer

 Dynamic variables: NEW(), DISPOSE()

17 Nov 200617 Nov 2006CMPT14x: §12.1-12.5CMPT14x: §12.1-12.5 1313

TODOTODO

 Lab09 due next week:
● Complex number library

 HW10 due Mon:
● Hand-simulation of Knight's tour

 Midterm next Wed 22Nov:
● M2 chs9-10
● Py ch10-14

