
§12.10-12.11, Py ch17: Linked Lists§12.10-12.11, Py ch17: Linked Lists

23 Nov 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● announcements



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 22

Review last time (12.1-12.5)Review last time (12.1-12.5)

 Pointers (in Modula-2 and C)

● Creating pointers, dereferencing pointers
● Assignment compatibility
● Pointer arithmetic
● NIL (in C: NULL)

 Static vs. dynamic allocation of memory

● Activation records
● Stack, stack pointer

 Dynamic variables: NEW(), DISPOSE()



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 33

What's on for today (12.8-12.12)What's on for today (12.8-12.12)

 Linked lists

● Type definition, creating a new list
 Inserting in nth position
 Insert at head, append to tail
 Deleting

● Algorithmic efficiency
● Circularly linked lists
● Bidirectional lists



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 44

Linked lists: creatingLinked lists: creating

 A linked list is a dynamic ADT where each item in the 
list contains a pointer to the next item:

class Node:

def __init__(self, data=None, next=None):
self.data = data
self.next = next

n1 = Node()

n2 = Node()

n1.next = n2

data next data next

data next

. . .

. . .



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 55

Operations on linked listsOperations on linked lists

 Index into list (get a reference to nth node)

 Print out the list

 Search list for given data (cargo/payload)

 Insert a new node into a linked list

 Delete a node from a linked list

● By index (0, 1, 2, ...) or by cargo

data next data next data next



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 66

Inserting a node into a linked listInserting a node into a linked list

 Follow pointers to get to the right spot

● Create a new node with the given cargo
● Thread new node into the list

newitem = Node(data)

newitem.next = cur.next

cur.next = newitem

● What about inserting at head of list?

data next

data next

data next

newitem

cur



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 77

Insert() method: codeInsert() method: code

def insert (self, n, data=None):

"""Insert a new node into linked list at position n."""

newitem = Node(data)

if n == 0: # new head: modify self

newitem.next = self

self = newitem

else:

cur = self

for idx in range(n-1): # get to proper position

cur = cur.next
newitem.next = cur.next

cur.next = newitem



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 88

Deleting from a linked listDeleting from a linked list

 Follow pointers to find the item we want to delete

● Sew up links to skip over the item
● Deallocate the item from memory

tmp = cur.next
cur.next = tmp.next
del tmp

data next

data next

data next

tmp

cur



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 99

Linked lists: algorithmic efficiencyLinked lists: algorithmic efficiency

 Big-O notation: O(n) means # operations varies 
linearly with n

 For a linked list with n items:

● Insert at head: don't have to traverse list: O(1)
● Append to tail: must walk list: O(n)
● General insert:

 Worst-case: O(n)
 Average-case: O(n/2), which is also O(n)

● Deleting: also O(n)

 Double-headed list (keep a tail pointer):

● Speeds up append-to-tail to O(1)



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 1010

Variants of linked listsVariants of linked lists

 Circularly linked list:
 tail.next = head

● How to keep from infinite loop?

 Bidirectional linked list:
class Node:

def __init__(self, data=None, prev=None, next=None):
self.data = data
self.prev = prev
self.next = next



24 Nov 200624 Nov 2006CMPT14x: §12.8-12.12, Py ch17CMPT14x: §12.8-12.12, Py ch17 1111

TODOTODO

 Lab10 due next week:

● Implement one of your old labs 2-7 in M2
● Full lab-writeup (may reuse old writeup)

 Quiz09 on Mon:

● Pointers (lec39), linked lists (lec43)

 Get cracking on your paper!


