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Review last time (§12.8-12.12)Review last time (§12.8-12.12)

 Linked lists

● Type definition, creating a new list
 Inserting in nth position
 Insert at head, append to tail
 Deleting

● Algorithmic efficiency
● Circularly linked lists
● Bidirectional lists
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Quiz09: Quiz09: 10 minutes10 minutes

 Let numApples be an integer variable, and let numApplesPtr be 
a pointer to numApples.

● Describe the contrast between the value in numApples and 
the value in numApplesPtr. [5]

● Write C code equivalent to this Python code:

 numApples += 1

but without using numApples directly! [3]

● Do the same in M2. [3]

 Draw a diagram representing a circular doubly-linked list with 
three elements: 'Fuji', 'Gala', 'Spartan'.  Clearly label all 
pointers. [9]
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Quiz09 answers: #1Quiz09 answers: #1

 Let numApples be an integer variable, and let numApplesPtr be 
a pointer to numApples.

● Describe the contrast between the value in numApples and 
the value in numApplesPtr.

● The value in numApples is an integer representing, e.g., the 
number of apples I own.  The value in numApplesPtr is an 
address in memory of where numApples is stored.

 C code:

 *numApplesPtr = (*numApplesPtr) + 1;
 M2 code:

 ^numApplesPtr := (^numApplesPtr) + 1;
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Quiz09 answers: #2Quiz09 answers: #2

 Draw a diagram representing a circular doubly-linked list with 
three elements: 'Fuji', 'Gala', 'Spartan'.  Clearly label all 
pointers.

data: 'Fuji'

prev:

next:

data: 'Gala'

prev:

next:

data: 'Spartan'

prev:

next:
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What's on for todayWhat's on for today

 Trees:

● Definition of terms:
 Parent, children, root, leaves, degree, depth, level, forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search
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TreesTrees

 Another kind of dynamic ADT is the tree:

● Root: starting node (one per tree)
 Could also have a forest of several trees

● Each node has at most one parent, and 
zero or more children

● Leaves: no children
● Depth: length of longest

path from root
● Degree: max # of 

children per node

root
parent

children

node

leaves
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Searching treesSearching trees

 A depth-first search of a tree pursues each path down 
to a leaf, then backtracks to the next path

 1-2 1-3-5 1-4-6 4-7 4-8

 A breadth-first search finishes each level before 
moving on to the next:

 1 2-3-4 5-6-7-8

1

3 4

5 6 7

2

8

Level 1
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Binary search treesBinary search trees

 Binary trees (degree=2) are handy for keeping things 
in sorted order:

class BST:

def __init__(self, data=None):

self.data = data

self.left = None

self.right = None
(* could also have a parent ptr *)

root = BST( 'Braeburn' )

root.left = BST( 'Ambrosia' )

root.right = BST( 'Gala' )

root.right.left = BST( 'Fuji' )

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

left right

left

 Everything in left 
subtree is smaller

 Everything in right 
subtree is bigger
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Binary tree traversalsBinary tree traversals

 Pre-order traversal of binary tree:

● Do self first, then left child, then right
 3 – 2 – 1 – 5 – 4 - 6

 In-order traversal:

● Do left child, then self, then right child
 1 – 2 – 3 – 4 – 5 – 6 (sorted order in BST)
 e.g. expressions: “12 + (2 * 5)”

 Post-order traversal:

● Do both children first before self
 1 – 2 – 4 – 6 – 5 - 3
 e.g. Reverse Polish Notation: 12, 2, 5, *, +

3

2 5

1 4 6
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Searching a BSTSearching a BST

 Recursive algorithm:

def search (self, key):

if key == self.data:

return self

elif key < self.data and self.left != None:

return self.left.search(key)

elif key > self.data and self.right != None:

return self.right.search(key)

else:

return None
“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”
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Inserting into a BSTInserting into a BST

 Keep it sorted: insert in a proper place

 One choice: always insert as a leaf

● Use search() algorithm to hunt for where the node 
ought to be if it were already in the tree

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”
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Deleting from a BSTDeleting from a BST

 Need to maintain sorted structure of BST

 Replace node with predecessor or successor leaf

● Predecessor: largest node in left subtree
● Successor: smallest node in right subtree

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo” successor

“Fuji”

“Ambrosia” “Gala”

“Cameo”
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BSTs and algorithmic efficiencyBSTs and algorithmic efficiency

 Searching in a balanced binary search tree takes 
worst-case O(log n) running time:

● Depth of balanced tree is log
2
 n

● Compare with arrays/linked lists: O(n)

 But depending on order of inserts, tree may be 
unbalanced:

 Insert in order: Ambrosia, Braeburn, Fuji, Gala:
 Tree degenerates to linked-list
 Searching becomes O(n)

 Keeping a BST balanced is a larger topic
 e.g., Splay-trees

“Fuji”

“Braeburn”

“Ambrosia”

“Gala”
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Review of todayReview of today

 Trees:

● Definition of terms:
 Parent, children, root, leaves, degree, depth, level, forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search
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TODOTODO

 Lab10 due next week:

● Due date postponed for all lab sections
● No Lab11
● Implement one of your old labs 2-7 in M2
● Full lab-writeup (may reuse old writeup)

 HW11 due Fri:

● delete() for doubly-linked list

 Paper due next Wed 6Dec


