
§14.7-14.8, Py ch20: Binary Trees§14.7-14.8, Py ch20: Binary Trees

27 Nov 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● Quiz09 today

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 22

Review last time (§12.8-12.12)Review last time (§12.8-12.12)

 Linked lists

● Type definition, creating a new list
 Inserting in nth position
 Insert at head, append to tail
 Deleting

● Algorithmic efficiency
● Circularly linked lists
● Bidirectional lists

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 33

Quiz09: Quiz09: 10 minutes10 minutes

 Let numApples be an integer variable, and let numApplesPtr be
a pointer to numApples.

● Describe the contrast between the value in numApples and
the value in numApplesPtr. [5]

● Write C code equivalent to this Python code:

 numApples += 1

but without using numApples directly! [3]

● Do the same in M2. [3]

 Draw a diagram representing a circular doubly-linked list with
three elements: 'Fuji', 'Gala', 'Spartan'. Clearly label all
pointers. [9]

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 44

Quiz09 answers: #1Quiz09 answers: #1

 Let numApples be an integer variable, and let numApplesPtr be
a pointer to numApples.

● Describe the contrast between the value in numApples and
the value in numApplesPtr.

● The value in numApples is an integer representing, e.g., the
number of apples I own. The value in numApplesPtr is an
address in memory of where numApples is stored.

 C code:

 *numApplesPtr = (*numApplesPtr) + 1;
 M2 code:

 ^numApplesPtr := (^numApplesPtr) + 1;

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 55

Quiz09 answers: #2Quiz09 answers: #2

 Draw a diagram representing a circular doubly-linked list with
three elements: 'Fuji', 'Gala', 'Spartan'. Clearly label all
pointers.

data: 'Fuji'

prev:

next:

data: 'Gala'

prev:

next:

data: 'Spartan'

prev:

next:

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 66

What's on for todayWhat's on for today

 Trees:

● Definition of terms:
 Parent, children, root, leaves, degree, depth, level, forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 77

TreesTrees

 Another kind of dynamic ADT is the tree:

● Root: starting node (one per tree)
 Could also have a forest of several trees

● Each node has at most one parent, and
zero or more children

● Leaves: no children
● Depth: length of longest

path from root
● Degree: max # of

children per node

root
parent

children

node

leaves

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 88

Searching treesSearching trees

 A depth-first search of a tree pursues each path down
to a leaf, then backtracks to the next path

 1-2 1-3-5 1-4-6 4-7 4-8

 A breadth-first search finishes each level before
moving on to the next:

 1 2-3-4 5-6-7-8

1

3 4

5 6 7

2

8

Level 1

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 99

Binary search treesBinary search trees

 Binary trees (degree=2) are handy for keeping things
in sorted order:

class BST:

def __init__(self, data=None):

self.data = data

self.left = None

self.right = None
(* could also have a parent ptr *)

root = BST('Braeburn')

root.left = BST('Ambrosia')

root.right = BST('Gala')

root.right.left = BST('Fuji')

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

left right

left

 Everything in left
subtree is smaller

 Everything in right
subtree is bigger

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 1010

Binary tree traversalsBinary tree traversals

 Pre-order traversal of binary tree:

● Do self first, then left child, then right
 3 – 2 – 1 – 5 – 4 - 6

 In-order traversal:

● Do left child, then self, then right child
 1 – 2 – 3 – 4 – 5 – 6 (sorted order in BST)
 e.g. expressions: “12 + (2 * 5)”

 Post-order traversal:

● Do both children first before self
 1 – 2 – 4 – 6 – 5 - 3
 e.g. Reverse Polish Notation: 12, 2, 5, *, +

3

2 5

1 4 6

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 1111

Searching a BSTSearching a BST

 Recursive algorithm:

def search (self, key):

if key == self.data:

return self

elif key < self.data and self.left != None:

return self.left.search(key)

elif key > self.data and self.right != None:

return self.right.search(key)

else:

return None
“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 1212

Inserting into a BSTInserting into a BST

 Keep it sorted: insert in a proper place

 One choice: always insert as a leaf

● Use search() algorithm to hunt for where the node
ought to be if it were already in the tree

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 1313

Deleting from a BSTDeleting from a BST

 Need to maintain sorted structure of BST

 Replace node with predecessor or successor leaf

● Predecessor: largest node in left subtree
● Successor: smallest node in right subtree

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo” successor

“Fuji”

“Ambrosia” “Gala”

“Cameo”

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 1414

BSTs and algorithmic efficiencyBSTs and algorithmic efficiency

 Searching in a balanced binary search tree takes
worst-case O(log n) running time:

● Depth of balanced tree is log
2
 n

● Compare with arrays/linked lists: O(n)

 But depending on order of inserts, tree may be
unbalanced:

 Insert in order: Ambrosia, Braeburn, Fuji, Gala:
 Tree degenerates to linked-list
 Searching becomes O(n)

 Keeping a BST balanced is a larger topic
 e.g., Splay-trees

“Fuji”

“Braeburn”

“Ambrosia”

“Gala”

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 1515

Review of todayReview of today

 Trees:

● Definition of terms:
 Parent, children, root, leaves, degree, depth, level, forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search

29 Nov 200629 Nov 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 1616

TODOTODO

 Lab10 due next week:

● Due date postponed for all lab sections
● No Lab11
● Implement one of your old labs 2-7 in M2
● Full lab-writeup (may reuse old writeup)

 HW11 due Fri:

● delete() for doubly-linked list

 Paper due next Wed 6Dec

