§14.7-14.8, Py ch20: Binary Trees

27 Nov 2006

CMPT14x

Dr. Sean Ho

Trinity Western University

¢’ TRINITY
WESTERN
T LINIVERSITY

* Quiz09 today

Review last time (§12.8-12.12)

® Linked lists

Type definition, creating a new list
¢+ |Inserting in nth position
+ Insert at head, append to tail
+ Deleting

Algorithmic efficiency
Circularly linked lists
Bidirectional lists

iy
TRINITY

WESTERN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

Quiz09: 10 minutes

m et numApples be an integer variable, and let numApplesPtr be
a pointer to numApples.

Describe the contrast between the value in numApples and
the value in numApplesPitr.

Write C code equivalent to this Python code:
+ numApples += 1
but without using numApples directly!

Do the same in M2.

®m Draw a diagram representing a circular doubly-linked list with
three elements: 'Fuji’, 'Gala’, 'Spartan’. Clearly label all
pointers.

iy
TRINITY

WESTERN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

Quiz09 answers: #1

m et numApples be an integer variable, and let numApplesPtr be
a pointer to numApples.

Describe the contrast between the value in numApples and
the value in numApplesPir.

The value in numApples is an integer representing, e.g., the
number of apples | own. The value in numApplesPtr is an
address in memory of where numApples is stored.

m C code:

* *numApplesPtr = (*numApplesPtr) + 1;
® M2 code:

* "numApplesPtr := (*numApplesPtr) + 1;

iy
TRINITY

\WESTERN |
W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

Quiz09 answers: #2

®m Draw a diagram representing a circular doubly-linked list with
three elements: 'Fuji', 'Gala’, 'Spartan’. Clearly label all
pointers.

data: 'Fuji’ data: 'Gala’ data: ‘Spartan’

next: |

i
TRINITY
WESTFRN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

What's on for today

B [rees:

Definition of terms:
+ Parent, children, root, leaves, degree, depth, level, forest
Depth-first vs. breadth-first search

Binary trees: pre/in/post-order traversal

Binary search trees (BST):

+ Type definition
+ Search, Insert, Delete
+ Algorithnmic efficiency of BST Search

iy
TRINITY

WESTERN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

Trees

® Another kind of dynamic ADT is the tree:

Root: starting node (one per tree)
+ Could also have a forest of several trees

Each node has at most one parent, and

zero or more children
Leaves: no children

Depth: length of longest node
path from root

Degree: max # of
children per node

children

iy
TRINITY

WESTERN

W INIVERSITY CMPT14x: §14.7-14.8, Py ch20

parent

root

leaves
29 Nov 2006

Searching trees

m A depth-first search of a tree pursues each path down
to a leaf, then backiracks to the next path

*1-2 1-3-5 1-4-6 4-7 4-8

m A breadth-first search finishes each level before
moving on to the next:

+1 2-34 5-6-7-8

D O D
TRINITY
YWESTERN CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

W INIVERSITY

Binary search trees

m Binary trees (degree=2) are handy for keeping things

in sorted order:

class BST:

def __init_ (self, data=None):

self.data = data
self.left = None
self.right = None

(* could also have a parent ptr *)

root = BST(‘Braeburn’) L] Everythlng in left
root.left = BST('Ambrosia’) subtree is smaller
root.right = BST('Gala') = Everything in right

subtree is bigger
root.right.left = BST('Fuji')

iy
TRINITY
WESTERN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

Binary tree traversals

m Pre-order traversal of binary tree: &>
Do self first, then left child, then right
¢+3-2-1-5-4-6 (2 (&2

® |n-order traversal:
(DD GO o
Do left child, then self, then right child

*+1-2-3-4-5-06 (sorted order in BST)
¢ e.g. expressions: “12 + (2 * 5)”
m Post-order traversal:

Do both children first before self
*1-2-4-6-5-3

2 + e.g. Reverse Polish Notation: 12, 2, 5, *, +
2 TRINITY
WESTFERN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006 10

Searching a BST

® Recursive algorithm:
def search (self, key):

if key == self.data:
return self

elif key < self.data and self.left I= None:

return self.left.search(key)
elif key > self.data and self.right != None:

return self.right.search(key)
else:

return None

iy
TRINITY
WESTERN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006 11

Inserting into a BST

m Keep it sorted: insert in a proper place
® One choice: always insert as a leaf

Use search() algorithm to hunt for where the node
ought to be if it were already in the tree

Braeburn

‘Ambrosia’

ahp
TRINITY

WESTFRN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

12

Deleting from a BST

®m Need to maintain sorted structure of BST

® Replace node with predecessor or successor leaf
Predecessor: largest node in left subtree
Successor: smallest node in right subtree

“Braenurn”

o T

successor

iy
TRINITY

WESTFRN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006 13

BSTs and algorithmic efficiency

m Searching in a balanced binary search tree takes
worst-case O(log n) running time:

Depth of balanced tree is log, n

Compare with arrays/linked lists: O(n)

m But depending on order of inserts, tree may be
unbalanced:
¢+ Insert in order. Ambrosia, Braeburn, Fuji, Gala:
+ Tree degenerates to linked-list
+ Searching becomes O(n)

m Keeping a BST balanced is a larger topic

¢ e.g., Splay-trees
e PINTY g., oplay
VWESTFERN
W ININERSITY

‘Ambrosia’

‘Braeburn

CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

Review of today

B [rees:

Definition of terms:
+ Parent, children, root, leaves, degree, depth, level, forest
Depth-first vs. breadth-first search

Binary trees: pre/in/post-order traversal

Binary search trees (BST):

+ Type definition
+ Search, Insert, Delete
+ Algorithnmic efficiency of BST Search

iy
TRINITY

WESTERN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

TODO

® [ab10 due next week:
Due date postponed for all [ab sections
No Lab11
Implement one of your old labs 2-7 in M2
Full lab-writeup (may reuse old writeup)
® HW11 due Fri:
delete() for doubly-linked list
m Paper due next Wed 6Dec

iy
TRINITY

WESTFRN

W INNVERSITY CMPT14x: §14.7-14.8, Py ch20 29 Nov 2006

16

