
§14.7-14.8, Py ch20:§14.7-14.8, Py ch20:
Binary Search Trees (cont.)Binary Search Trees (cont.)

1 Dec 2006
CMPT14x
Dr. Sean Ho
Trinity Western University

● HW11 due today
● See rubric for paper

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 22

What's on for todayWhat's on for today

 Trees:
● Definition of terms:

 Parent, children, root, leaves, degree, depth, level,
forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 33

Binary search treesBinary search trees

 Binary trees (degree=2) are handy for keeping
things in sorted order:

class BST:

def __init__(self, data=None):

self.data = data

self.left = None

self.right = None
(* could also have a parent ptr *)

root = BST('Braeburn')

root.left = BST('Ambrosia')

root.right = BST('Gala')

root.right.left = BST('Fuji')

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

left right

left

 Everything in left
subtree is smaller

 Everything in right
subtree is bigger

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 44

Binary tree traversalsBinary tree traversals

 Pre-order traversal of binary tree:
● Do self first, then left child, then right

 3 – 2 – 1 – 5 – 4 - 6

 In-order traversal:
● Do left child, then self, then right child

 1 – 2 – 3 – 4 – 5 – 6 (sorted order in BST)
 e.g. expressions: “12 + (2 * 5)”

 Post-order traversal:
● Do both children first before self

 1 – 2 – 4 – 6 – 5 - 3
 e.g. Reverse Polish Notation: 12, 2, 5, *, +

3

2 5

1 4 6

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 55

Searching a BSTSearching a BST

 Recursive algorithm:
def search (self, key):

if key == self.data:

return self

elif key < self.data and self.left != None:

return self.left.search(key)

elif key > self.data and self.right != None:

return self.right.search(key)

else:

return None “Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 66

Inserting into a BSTInserting into a BST

 Keep it sorted: insert in a proper place

 One choice: always insert as a leaf
● Use search() algorithm to hunt for where the

node ought to be if it were already in the tree

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo”

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 77

Deleting from a BSTDeleting from a BST

 Need to maintain sorted structure of BST

 Replace node with predecessor or successor leaf
● Predecessor: largest node in left subtree
● Successor: smallest node in right subtree

“Fuji”

“Braeburn”

“Ambrosia” “Gala”

“Cameo” successor

“Fuji”

“Ambrosia” “Gala”

“Cameo”

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 88

BSTs and algorithmic efficiencyBSTs and algorithmic efficiency

 Searching in a balanced binary search tree takes
worst-case O(log n) running time:

● Depth of balanced tree is log
2
 n

● Compare with arrays/linked lists: O(n)
 But depending on order of inserts, tree may be

unbalanced:
 Insert in order: Ambrosia, Braeburn, Fuji, Gala:
 Tree degenerates to linked-list
 Searching becomes O(n)

 Keeping a BST balanced is a larger topic
 e.g., Splay-trees

“Fuji”

“Braeburn”

“Ambrosia”

“Gala”

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 99

Review of todayReview of today

 Trees:
● Definition of terms:

 Parent, children, root, leaves, degree, depth, level,
forest

● Depth-first vs. breadth-first search
● Binary trees: pre/in/post-order traversal
● Binary search trees (BST):

 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search

1 Dec 20061 Dec 2006CMPT14x: §14.7-14.8, Py ch20CMPT14x: §14.7-14.8, Py ch20 1010

TODOTODO

 Lab10 due next week:
● No Lab11
● Implement one of your old labs 2-7 in M2
● Full lab-writeup (may reuse old writeup)

 Quiz11 next Mon:
● Trees (lectures 45, 47)

 Paper due Wed 6Dec
● If by paper, due by 5pm to me
● If by email, by midnight

