
§§2.3-2.4: Problem Solving,2.3-2.4: Problem Solving,
Documentation, StyleDocumentation, Style

17 Sep 2007
CMPT14x
Dr. Sean Ho
Trinity Western University

● Quiz ch1 today

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 22

Quiz ch1Quiz ch1

 Get out a blank sheet of paper

 In the top right corner, write

● Your name

● Student ID#

● CMPT14x Quiz 1

● Today's date (17 Sep 2007)

 Number your answers and provide short answers as
best you can

 Closed book, closed notes, closed laptops/calcs

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 33

Quiz ch1 Quiz ch1 (20 points, 10 minutes)(20 points, 10 minutes)

 Copy this sentence and fill in the blanks: [4]

● “Computers are t____, and
computer scientists are t_________.”

 What are the five steps of top-down problem solving?
● (okay if you don't get exact words; write the concepts) [5]

 What's the difference between 7, 7.0, and “7”? [3]
Explain.

 What does this evaluate to in Python: 15 / 4 [2]

 Name three examples of hardware for input and
three examples of hardware for output. [6]

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 44

Quiz ch1: solutions (#1-2)Quiz ch1: solutions (#1-2)

 “Computers are tools, and (2)
computer scientists are toolsmiths.” (2)

 Five steps of top-down problem solving: (5)

● Write everything down

● Apprehend the problem

● Design a solution

● Execute your plan

● Scrutinize the results

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 55

Quiz ch1: solutions (#1-2)Quiz ch1: solutions (#1-2)

 7 vs. 7.0 vs. “7”:

● Type: int vs. float vs. str

 15 / 4:

● 3 (not 3.75, not 4)

 Input hardware:

● Keyboard, mouse, touchscreen, camera,
microphone, game controller, laser rangefinder, ...

 Output hardware:

● Monitor, printer, speaker, motor, etc.

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 66

What's on for today (§2.3-2.4)What's on for today (§2.3-2.4)

 Strong typing vs. weak typing

 Steps to problem solving: WADES in more detail

 Documentation

● External documentation: design, manuals

● Internal documentation: comments, docstrings

 Style guidelines

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 77

Strong typing vs. weak typingStrong typing vs. weak typing

 All variables have a type:

● int, float, str, bool, etc.

 Some languages (e.g. C, M2, Java) are strongly-typed:

● Must declare the type of the variable ahead of time:

 x, y : REAL;
 k : CARDINAL;

● Can't change type or assign a value of different type:

 x := “Hello World!”; (* won't work in M2 *)
 But Python is weakly-typed: variables can change type:

 x = 5.0
 x = True # okay in Python

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 88

Declaring vs. initializingDeclaring vs. initializing

 This is only necessary for strongly-typed languages:

● Declare a variable to tell the compiler
the type of the variable:
 VAR numApples : CARDINAL; (* M2 *)

● Its value is undefined until it is initialized:
 BEGIN

● numApples := 5; (* M2 *)

 In a weakly-typed language like Python, just initialize
the variable:

 numApples = 5 # okay in Python

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 99

Keyboard inputKeyboard input

 You know how to output using print()

 Use input() to get a value from the user:

● balance = input(“Opening balance? ”)

● The argument is the prompt string

● Dynamic typing: Python interprets the user's
response and determines its type

● Just pressing Enter w/o input gives an error

 You can use raw_input() at the end of your program to
wait for the user to press Enter before the program
finishes

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1010

DocumentationDocumentation

 Document your thinking at every step,
even the ideas that didn't work!

● Programmer's diary: log of everything

 External documentation: outside the program
● User manual:

 What user input is required

 What the user should expect the program to output

 No details about program internals

 Internal documentation: within the program
● Descriptive variable/module names

● Comments in the code

● Online help for the user

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1111

Examples of internal documentationExamples of internal documentation

 Good variable names: numHashes
● Bad variable names: x, num, i

 Comments: # in Python (to end of line)
● # loop numHashes times

● while (counter < numHashes):

 print “#”, # no newline
 counter = counter + 1

 Online help:
● “Enter 'h' for online help.”

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1212

CommentsComments

 Explain the “why”, not the “what”:

● Bad: x = x + 1 # increment x

● Good: x = x + 1 # do next hashmark

 Keep comments up-to-date!

● Incorrect comments are worse than no comments

 Comments are no substitute for external
documentation

● Still need a separate design doc, pseudocode, user
manual, etc.

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1313

DocstringsDocstrings

 Python convention is to create a docstring at the top of
every module, function, class, etc.:
● ” ” ” Print a bunch of hashes.

Nellie Hacker, CMPT140
” ” ”
numHashes = input(“How many hashes? ”)
. . .

 Triple-quotes: this is a string, not a comment

 First line is a short summary

 Second line is blank, then detailed description

 Automated Python tools read docstrings to help you organize
your code
● More info: http://www.python.org/dev/peps/pep-0257/

http://www.python.org/dev/peps/pep-0257/

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1414

Style conventionsStyle conventions

 Not hard-and-fast rules, but flexible conventions that make
code easier to read and understand

 Variable names: numHashes

● Flexible, but I prefer no underscores, and capitalize each
word (“CamelCase”)

● First letter is lowercase

 File/module names: helloworld.py

● Short, all lowercase, no underscores

 Function names: print_hashes()

● lowercase, command predicate, underscores
 More details: http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1515

ExpressionsExpressions

 An expression is a combination of
● Literals, constants, and variables,

● Using appropriate operations (by type)

12 – 7

numApples * 4

 A few operators we'll look at:
● Binary: + - * / % // **

● Comparison: == < > <= => != <> is

● Boolean: and or not (shortcut)

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1616

Binary arithmetic operatorsBinary arithmetic operators

 + , –, *: addition, subtraction, multiplication

 : power: 24 == 16

 /: division: 7.0 / 2 == 3.5

● On two ints, returns an int (floor): 7 / 2 == 3

● A note about float arithmetic: 7.2 / 2 ≠ 3.6

 //: floor division

● Same as / for ints: 7 // 2 == 3

● On floats, returns floor of quotient: 7.0 // 2 == 3.0

 %: modulo (remainder): 8 % 3 == 2

● 8 % 0 => ZeroDivisionError

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1717

Comparison operatorsComparison operators

 Test for quantitative equality:2 + 3 == 5

 Test for inequality: 2 + 3 != 4

● Can also use <>

 Comparison: <, >, <= , >=

 Test for identity: is, is not

● (2, 3) == ((2, 3)), but

● (2, 3) is not ((2, 3))

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1818

Boolean operators: shortcutBoolean operators: shortcut

 Boolean operators: and or not

● In C/C++/Java: && || !

 Python's boolean operators have shortcut semantics:

● Second operand is only evaluated if necessary
 (7 / 0) and False => ZeroDivisionError
 False and (7 / 0) == False

● Doesn't raise ZeroDivisionError

 True or (7 / 0) == True
● Same thing

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 1919

Type conversionsType conversions

 Python is dynamically typed, so operators can do
implicit type conversions to their operands:

● 2 (int) + 3.5 (float) == 5.5 (float)
 Plus (+) operator converts 2 (int) to 2.0 (float)

 You can manually convert types:

● int(2.7) == 2

● int(True) == 1

● Better alternative to input():
 ageString = raw_input(“Age? ”)
 age = int(ageString)

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 2020

PrecedencePrecedence

 Of the operators we've learned, the precedence order from
highest (evaluated first) to lowest (evaluated last) is
● **

● Unary +, -

● *, /, %, //

● Binary +, -

● ==, !=, <>, <, >, <=, >=

● Is, is not

● Not

● And

● or

 Complete precedence rules at http://docs.python.org/ref/summary.html

http://docs.python.org/ref/summary.html

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 2121

Formatted output: print with %Formatted output: print with %

 The built-in function print can accept a format string:
 print “You have %d apples.” % 7

● Output: “You have 7 apples.”

● It can take multiple arguments:
 print “%d apples and %d oranges.” % 7, 10

● Output: “7 apples and 10 oranges.”

● Format codes:
 %d: integer
 %f: float
 %s: string

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 2222

Formatting: %d, %fFormatting: %d, %f

 You can specify the field width:
 print “%3d apples” % 5

● Output: “ 5 apples” (note two leading spaces)

 print “%-3d apples” % 5
● Output: “5 apples” (left-aligned: two trailing spaces)

 print “%03d apples” % 5
● Output: “005 apples” (padded with zeros)

 print “%4.1f apples” % 5.273
● Output: “ 5.3 apples”
● 4 is the total field width, including the decimal
● 1 is the number of digits after the decimal

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 2323

Review of today (§2.3-2.4)Review of today (§2.3-2.4)

 Steps to problem solving: WADES in more detail

 Documentation

● External documentation: design, manuals

● Internal documentation:

 Comments
 Docstrings

 Style guidelines

 (see bankinterest.py example)

17 Sep 200717 Sep 2007CMPT 14x: §2.3 - 2.4CMPT 14x: §2.3 - 2.4 2424

TODO itemsTODO items

 Lab01 due Wed by midnight

● myCourses electronic turn-in should be working

● If it doesn't work, just email your lab to me as an
attachment

 HW02 due Fri:

● 2.14 # 7 (interpret it in Python), 11, 13

