
§4.8-4.10, Py ch5-6: Recursion§4.8-4.10, Py ch5-6: Recursion

26 Sep 2007
CMPT14x
Dr. Sean Ho
Trinity Western University

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 22

Review from last time (ch4)Review from last time (ch4)

 Some debugging tips

 A fun example: ROT13

● ord(), chr(), string indexing, len()

● Stub program

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 33

Addendum: iterating a stringAddendum: iterating a string

 Iterating through a string:

for idx in range(len(myString)):
myChar = myString[idx]

● Shorthand in Python:
(can treat strings as lists of characters)

for myChar in myString:
myChar ...

● For example:
for myChar in "Hello World!":

print myChar

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 44

What's on for today (§4.8, Py ch5-6)What's on for today (§4.8, Py ch5-6)

 Recursive functions

● Factorial example

 Call stack, backtrace

● Fibonacci example

 Abstract Data Types

● Type hierarchy

 Enumerations

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 55

RecursionRecursion

 Recursion is when a function invokes itself

 Classic example: factorial (!)

● n! = n(n-1)(n-2)(n-3) ... (3)(2)(1)

● 0! = 1

 Compute recursively:

● Inductive step: n! = n*(n-1)!

● Base case: 0! = 1

 Inductive step: assume (n-1)! is calculated correctly;
then we can find n!

 Base case is needed to tell us where to start

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 66

factorial() in Pythonfactorial() in Python

def factorial(n):

"""Calculate n!. n should be a positive integer."""

if n == 0: # base case

return 1
else: # inductive step

return n * factorial(n-1)

 Progress is made each time: factorial(n-1)

 Base case prevents infinite recursion

 What about factorial(-1)? Or factorial(2.5)?

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 77

The call stackThe call stack

 When a program is running, an area of
memory is set aside to store local
variables, the state of the program, etc.

 When a procedure is invoked, the calling
context is saved, and a new chunk of
memory is allocated for the procedure to
use: its stack frame

 When the procedure finishes, its frame is
released and control goes back to the
calling context

 The stack pointer keeps track of what
frame is currently running

__main__

calc_volume()

math.sin()

stack
pointer

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 88

Call stack for recursive functionsCall stack for recursive functions

def factorial(n):

"""Compute the factorial of a
positive integer."""

if n == 0:

return 1

else:

return n*factorial(n-1)

 If there were any local variables,
each frame would have its own
instance of the local variables

 When an error (exception) happens,
IDLE shows a backtrace: part of the
call stack __main__

factorial(3)

factorial(2)

stack
pointer

factorial(1)

factorial(0)

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 99

Another recursive ex.: FibonacciAnother recursive ex.: Fibonacci

 Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34,...

● Each number is the sum of the two previous
def fibonacci(n):

"""Compute the n-th Fibonnaci number.

pre: n should be a positive integer.

"""

if n == 0 or n == 1: # base case

return 1
else: # inductive step

return fibonacci(n-2) + fibonacci(n-1)
● Note: very inefficient algorithm!

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 1010

Abstract Data TypesAbstract Data Types

 Recall the categorization of

● Atomic vs. Aggregate (compound) types

 Some examples of atomic data types:

● Real (float), integer (int), Boolean (bool)

● Character (if the language has such a type)

 Some examples of aggregate data types:

● Arrays, tuples, dictionaries, records/structs

 Abstract Data Type (ADT):

● Details of implementation are hidden from user
(how to represent a float in binary form?)

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 1111

M2 type hierarchy (partial)M2 type hierarchy (partial)

 Atomic types

● Scalar types

 Real types (REAL, LONGREAL)

 Ordinal types (CHAR)
● Whole number types (INTEGER, CARDINAL)
● Enumerations (§5.2.1) (BOOLEAN)
● Subranges (§5.2.2)

 Structured (aggregate) types

● Arrays (§5.3)

 Strings (§5.3.1)

● Sets (§9.2-9.6)

● Records (§9.7-9.12)

 Also can have user-defined types

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 1212

Python type hierarchy (partial)Python type hierarchy (partial)

 Atomic types

● Numbers

 Integers (int, long, bool): 5, 500000L, True

 Reals (float) (only double-precision): 5.0

 Complex numbers (complex): 5+2j

 Container (aggregate) types

● Immutable sequences

 Strings (str): "Hello"

 Tuples (tuple): (2, 5.0, "hi")

● Mutable sequences

 Lists (list): [2, 5.0, "hi"]

● Mappings

 Dictionaries (dict): {"apple": 5, "orange": 8}

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 1313

Enumeration types in M2 (also C)Enumeration types in M2 (also C)

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
today : DayName;

BEGIN
today := Mon;

 We could have used CARDINALs instead
(and indeed the underlying implementation does)

● But the logical semantic of today's type is a
DayName type, not a CARDINAL

 Can be thought of as Sun=0, Mon=1, Tue=2, ...

 No explicit enumeration scheme in Python

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 1414

Review of today (§4.8, Py ch5-6)Review of today (§4.8, Py ch5-6)

 Recursive functions

● Factorial example

 Call stack, backtrace

● Fibonacci example

 Abstract Data Types

● Type hierarchy

 Enumerations

26 Sep 200726 Sep 2007CMPT14x: RecursionCMPT14x: Recursion 1515

TODOTODO

 Lab 02 due tonight:

● M2 ch3 # (16 / 17 / 23a / 23b / 23c)

 Quiz03 (ch4) this Fri

 Lab 03 due next Wed:

● M2 ch4 # (23 / 27 / 36)

 HW03 due next Mon: 4.11 #7, 18; 5.11 # 15

 Read through M2 ch5 and Py ch7, plus Py ch10

 Midterm ch1-5 next week Fri 5Oct

