
§5.1-5.5: Arrays§5.1-5.5: Arrays
Py 10.1-10.7: ListsPy 10.1-10.7: Lists

28 Sep 2007
CMPT14x
Dr. Sean Ho
Trinity Western University

● Quiz03 (ch4) today

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 22

Quiz 03 (ch4): Quiz 03 (ch4): 10 minutes, 20 points10 minutes, 20 points

 Define recursion in your own words.

● Write a short example in Python to illustrate.
 (It doesn't have to do anything useful.)

 What is the call stack used for?

 What are global variables and why are they bad?

 Write a Python function that returns the value of the
sum 1 + 2 + 3 + ... + n.

 Docstring / comments not necessary but useful for partial
credit.

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 33

Quiz 03: Quiz 03: answers #1-2answers #1-2

 What is recursion?

● A recursive function invokes itself:
def countdown(n):

if n <= 0:

return 0
print n,

return countdown(n-1)

 What is the call stack?

● Keeps track of which procedures are currently
running. Made up of stack frames, recording local
variables and parameters for each function
invocation.

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 44

Quiz 03: Quiz 03: answers #3-4answers #3-4

 What are global variables?
● Accessible everywhere in the module: even inside

functions defined in the module

● Functions can modify global variables and cause
unintended side-effects

 Calculate the sum 1 + 2 + ... + n:

def sum(n):
result = 0

for term in range(1,n+1):

result += term
return result

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 55

What's on today (§5.1-5.5, Py 10.1-10.7)What's on today (§5.1-5.5, Py 10.1-10.7)

 Python lists vs. M2/C arrays

 Lists as function parameters

 Multidimensional arrays/lists

 Python-specific list operations

● Membership (in)

● Concatenate (+), repeat (*)

● Delete (del), slice ([s:e])

● Aliasing vs. copying lists

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 66

M2 type hierarchy (partial)M2 type hierarchy (partial)

 Atomic types

● Scalar types

 Real types (REAL, LONGREAL)

 Ordinal types (CHAR)
● Whole number types (INTEGER, CARDINAL)
● Enumerations (§5.2.1) (BOOLEAN)
● Subranges (§5.2.2)

 Structured (aggregate) types

● Arrays (§5.3)

 Strings (§5.3.1)

● Sets (§9.2-9.6)

● Records (§9.7-9.12)

 Also can have user-defined types

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 77

Python type hierarchy (partial)Python type hierarchy (partial)

 Atomic types

● Numbers

 Integers (int, long, bool): 5, 500000L, True

 Reals (float) (only double-precision): 5.0

 Complex numbers (complex): 5+2j

 Container (aggregate) types

● Immutable sequences

 Strings (str): "Hello"

 Tuples (tuple): (2, 5.0, "hi")

● Mutable sequences

 Lists (list): [2, 5.0, "hi"]

● Mappings

 Dictionaries (dict): {"apple": 5, "orange": 8}

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 88

Enumeration types in M2 (also C)Enumeration types in M2 (also C)

TYPE
DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
today : DayName;

BEGIN
today := Mon;

 We could have used CARDINALs instead
(and indeed the underlying implementation does)

● But the logical semantic of today's type is a
DayName type, not a CARDINAL

 Can be thought of as Sun=0, Mon=1, Tue=2, ...

 No explicit enumeration scheme in Python

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 99

Lists in PythonLists in Python

 Python doesn't have a built-in type exactly like arrays,
but it does have lists:

nelliesWages = [0.0, 25.75, 0.0, 0.0, 0.0]

nelliesWages[1] # returns 25.75

 Under the covers, Python often implements lists using
arrays, but lists are more powerful:

● Can change length dynamically

● Can store items of different type

● Can delete/insert items mid-list

 For now, we'll treat Python lists as arrays

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1010

Using listsUsing lists

 We know one way to generate a list: range()
range(10) # returns [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 Or create directly in square brackets:
myApples = ["Fuji", "Gala", "Red Delicious"]

 We can iterate through a list:
for idx in range(len(myApples)):

print "I like", myApples[idx], "apples!"

 Even easier:
for apple in myApples:

print "I like", apple, "apples!"

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1111

Lists as parametersLists as parameters

def average(vec):

"""Return the average of the vector's values.
pre: vec should have scalar values (float, int) and not be

empty.
"""
sum = 0
for elt in vec:

sum += elt
return sum / len(vec)

myList = range(9)

print average(myList) # prints 4

 What happens when we pass an empty array? An atomic
value?

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1212

Type-checking list parametersType-checking list parameters

 Since Python is dynamically-typed, the function
definition doesn't specify what type the parameter is,
or even that it needs to be a list

● Easy way out: state expected type in precondition

● Or do type checking in the function:
if type(vec) != list:

print "Need to pass this function a list!"

return

● May also want to check for empty lists:
if len(vec) == 0:

 for, len(), etc. don't work on atomic types

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1313

Array parameters in M2/C/etc.Array parameters in M2/C/etc.

 In statically-typed languages like M2, C, etc., the
procedure declaration needs to specify that the
parameter is an array, and the type of its elements:

● M2:
PROCEDURE Average(myList: ARRAY of REAL) : REAL;

● C:
float average(float* myList, unsigned int len) {

 In M2, HIGH(myList) gets the length

 In C, length is unknown (pass in separately)

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1414

Multidimensional arraysMultidimensional arrays

 Multidimensional arrays are simply arrays of arrays:
myMatrix = [[0.0, 0.1, 0.2, 0.3],

[1.0, 1.1, 1.2, 1.3],

[2,0, 2.1, 2.2, 2.3]]

 Accessing:
myMatrix[1][2] = 1.2

 Row-major convention:

0.0 0.1 0.2 0.3
1.0 1.1 1.2 1.3
2.0 2.1 2.2 2.3 

myMatrix[1]

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1515

Iterating through multidim arraysIterating through multidim arrays

def matrix_average(matrix):

"""Return the average value from the 2D matrix.
Pre: matrix must be a non-empty 2D array of scalar

values."""
sum = 0
num_entries = 0
for row in range(len(matrix)):

for col in range(len(matrix[row])):
sum += matrix[row][col]

num_entries += len(matrix[row])
return sum / num_entries

 What if rows are not all equal length?

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1616

List operations (Python specific)List operations (Python specific)

myApples = ["Fuji", "Gala", "Golden Delicious"]

 Test for list membership:

if "Fuji" in myApples: # True

 Concatenate:

['a', 'b', 'c'] + ['d', 'e']

 Repeat:

['a', 'b', 'c'] * 2

 Modify list entries (mutable):

myApples[1] = "Braeburn"

 Convert a string to a list of characters:

list("Hello World!") # ['H', 'e', 'l', 'l', 'o', ...]

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1717

More list operationsMore list operations

 Delete an element of the list:
del myApples[1] # ["Fuji", "Golden Delicious"]

 List slice (start:end):
myApples[0:1] # ["Fuji", "Gala"]

 Assignment is aliasing:
yourApples = myApples # points to same array

 Use a whole-list slice to copy a list:
yourApples = myApples[:]

[:] is shorthand for [0:-1] or [0:len(myApples)-1]

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1818

Summary of today (§5.1-5.5, Py 10.1-10.7)Summary of today (§5.1-5.5, Py 10.1-10.7)

 Python lists vs. M2/C arrays

 Lists as function parameters

 Multidimensional arrays/lists

 Python-specific list operations

● Membership (in)

● Concatenate (+), repeat (*)

● Delete (del), slice ([s:e])

● Aliasing vs. copying lists

28 Sep 200728 Sep 2007CMPT14x: Arrays and ListsCMPT14x: Arrays and Lists 1919

TODOTODO

 HW03 due next Mon:

● M2 ch4 # 7, 18

● M2 ch5 # 15

 Lab 03 due Wed:

● M2 ch4 # (23 / 27 / 36)

 Read through M2 ch5 and Py ch7, plus Py ch10

 Midterm ch1-5 next week Fri 5Oct

