
§6.5-6.10: Writing Library Modules§6.5-6.10: Writing Library Modules

12 Oct 2007
CMPT14x
Dr. Sean Ho
Trinity Western University

HW04 due today

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 22

Review of §6.1-6.4Review of §6.1-6.4

 Working with files: open(), close()

● File handles / file objects

 Input: read(), readline(), readlines()

 Output: write(), flush()

 The file position pointer: seek(), tell()

 Standard I/O channels: sys.stdin, stdout, stderr

 Python standard math library

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 33

Library modules vs. programsLibrary modules vs. programs

 So far we've been writing Python programs
(e.g., helloworld.py)

 Our programs have used library modules
(e.g., import math)

 Libraries group related code for reuse (import)

● Only need to define cos() once

● Libraries are not intended to be executed (called),
unlike programs

 We can create our own libraries for others to use

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 44

Designing librariesDesigning libraries

 In creating a library, we need to decide what the public
interface is: how programs can use it

● Functions, types, constants, etc. for public use

● Think about pre-/post-conditions

 We can hide implementation details

● Certain functions may be
for internal use only

 Car: how to use it vs. how it works

● Owner's manual vs. shop manual

● A driver doesn't need to understand how the engine
works, variable valve timing/lift, etc.

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 55

Definition vs. implementation filesDefinition vs. implementation files

 In M2, each library has a definition file and an
implementation file:

● DEF: declares types and procedures
 Tells programs how to invoke its procedures
 No bodies to the procedures

● IMP: implements the procedures
 Parameter lists must match those in DEF file

 In C/C++, definition files are called header files
(.h, .H, .hpp)

 In Python, everything is in one .py file

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 66

Example: Fractions ADTExample: Fractions ADT

 Often modules are used to define abstract data types:
let's make a fraction type: fraction.py

 We can represent a fraction a/b internally as tuple of
integers: (a, b)

 Our fractions module will contain the fraction type as
well as all the procedures we need to use variables of
type fraction

 We want to hide the internal representation as much
as possible, so that a program using our library thinks
just in terms of the fraction ADT.

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 77

Basic fractions functionsBasic fractions functions

 Create a new fraction object:
def create(numer, denom):

"""Return a new fraction object.
Pre: numer and denom are ints; denom != 0.

"""

return (numer, denom) # a tuple

 Access the internal representation:
def get_n(frac):

"""Return the top of the fraction."""

return frac[0]

def get_d(frac):

"""Return the bottom of the fraction."""
return frac[1]

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 88

Accessor (set/get) functionsAccessor (set/get) functions

 Why have get_n() and get_d()?
Why not just access frac[0] and frac[1] directly?

 Want to hide the fact that our fractions are really just
tuples

 Future version could store fractions differently

● Then just change implementation of get_n() and
get_d()

● Public interface stays the same

 Can also protect against setting a
zero denominator

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 99

Library functions: invert(), mult()Library functions: invert(), mult()

 Swap numerator and denominator:
def invert(frac):

"""Return the reciprocal of the fraction."""

if get_n(frac) == 0:

return 1/0 # raise ZeroDivisionError
return (get_d(frac), get_n(frac))

 Multiply two fractions:
def mult(f1, f2):

"""Multiply f1 and f2. Doesn't cancel common factors."""

return (get_n(f1) * get_n(f2), get_d(f1) * get_d(f2))

 Divide?

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 1010

Library functions: to_string()Library functions: to_string()

 Provide a way to pretty-print a fraction:
def to_string(frac):

"""Return a string representation of the fraction."""

return "%d / %d" % (get_n(frac), get_d(frac))

 Library: http://twu.seanho.com/python/fraction.py

http://twu.seanho.com/python/fraction.py

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 1111

Using our libraryUsing our library

 Import our library:

● fraction.py must be in same directory
import fraction

 Create a couple fractions:
f1 = fraction.create(2,3)

f2 = fraction.create(6,7)

 Multiply them:
f3 = fraction.mult(f1, f2)

 Print the result:
print fraction.to_string(f3)

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 1212

Doing this the object-oriented wayDoing this the object-oriented way

 Object-oriented design is organized around the data
structure:

● Build up a suite of functions to use the ADT

 The “real” Python way of writing a fractions ADT is to
create a fractions class

● Classes are user-defined data types

● Can really hide implementation from user

● Functions are methods of the class
 e.g., myFile.read() is a method on file objects

12 Oct 200712 Oct 2007CMPT14x: writing librariesCMPT14x: writing libraries 1313

TODO itemsTODO items

 Lab05 due Wed: ch6 # 33 / 35

 Quiz04 on Mon: ch5-6

 140 Final / 141 midterm in two weeks

● Wed 24Oct 14:35-15:50 (part 1)

● Thu 25Oct 13:10-14:15 (part 2)

