Py ch15:
Object-Oriented Programming

31 Oct 2007

CMPT14x

Dr. Sean Ho

Trinity Western University

i
TRINITY
VWESTFR M
W INIVERSITY



Quiz05: ch7-8 (10 mins, 20 pts)

® |In C, why should you always allocate strings
(arrays of char) to be at least one char longer than the
longest string you'll need to store?

What could happen if you don't?

m Convert 1100 1011 from binary to both hexadecimal
and octal, in Python form.

m Express 2Mb/sec in bytes/sec (binary units, not Sl)
(you may express your answer in powers of 2)

® Write a Python function that returns a random integer
between -100 and 100, inclusive.

¢ TRINITY

WESTFRN

W INIVERSITY CMPT14x: objects 31 Oct 2007



Quiz05: answers #1-2

® |In C, why should you always allocate strings
(arrays of char) to be at least one char longer than the
longest string you'll need to store?

Need to store null character to terminate string

If don't, won't know when to stop when reading
string; may overwrite other memory when writing

m Convert 1100 1011 from binary to both hexadecimal
and octal, in Python form.

hex: OxCB
oct: 0313

¢ TRINITY

WESTFRN

. INIVERSITY CMPT14x: objects 31 Oct 2007



Quiz05: answers #3-4

m Express 2Mb/sec in bytes/sec (binary units, not Sl)
2'% bytes/sec

® Write a Python function that returns a random integer
between -100 and 100, inclusive.

+ def randint():

from random import random
return 200%int(random.random()) - 100

¢ TRINITY

WESTFRN

W INIVERSITY CMPT14x: objects 31 Oct 2007



Stonybrook M2 environment

® The Stonybrook M2 software is installed on TWU lab
PCs (Start->Programs->Computing)

m Stonybrook orientation:
http://twu.seanho.com/05fall/cmpt14x/stonybrook/

m Start with an empty project file:
http://twu.seanho.com/05fall/cmpt14x/stonybrook/M2Project.sbp

® You can have multiple programs and libraries in one
project; all modules in the same project can import
from one another

® Create a new program module in this project:

File->New Module: Program module type

e
TRINITY
VAFSTFRM

W INIVERSITY CMPT14x: objects 31 Oct 2007


http://twu.seanho.com/05fall/cmpt14x/stonybrook/
http://twu.seanho.com/05fall/cmpt14x/stonybrook/M2Project.sbp

Records in Python: Classes

® In Python, classes are user-defined types:

¢ class StudentRecord:

firstName =
lastName =
ID=0
year =0
® Instantiate a new object of type StudentRecord:
¢ student1 = StudentRecord()
+ student1.firstName = 'Tom'

B studenti is an instance of the class StudentRecord

® “x is a variable of type int”

09
TRINITY
WESTERN

CMPT14x: object 31 Oct 2007
W INIVERSITY X+ OBJECES ¢



Object-oriented programming

® Procedural paradigm: programs as lists of actions
Focus is on the procedures (verbs)

Variables, data structures get passed into
procedures

¢ e.g.: string.upper(‘hello’)
m Object-oriented paradigm: collections of objects
Focus is on the data (nouns)
Messages get passed between objects

Procedures are methods belonging to objects

¢ e.g.: 'hello’.upper()
A0
TRINITY
WESTERN

W INIVERSITY CMPT14x: objects 31 Oct 2007



Everything Is an object

® |n object-oriented programming, all data are objects:
Variables, procedures, even libraries

® \We make things happen by passing messages
between objects

+ myFile.read(16)

myFile )

read()

20

+ appleName.upper() e
_ _ _ program
® The object itself defines what ressages | S
these are called its methods "”m’:'f’p'es
string
e.g., files have read(), write(), etc.
strings have upper(), len(), etc.
' TRINITY
WESTERN CMPT14x: objects 31 Oct 2007 8

W INIVERSITY



Methods and attributes

®m Everything you can do with an object is encapsulated
In its object definition

Methods make up the interface to the object
® Objects can also have attributes (variables)
® Qur fractions.py ADT example:

Methods: get _n(), get d(), add(), mult(), etc.

+ Everything you need to interact with a Fraction
Attributes: tuple (n,d)

+ Could also have two separate attributes:
num, denom

¢ TRINITY

WESTFRN

W INIVERSITY CMPT14x: objects 31 Oct 2007



Classes and instances

®m We define (declare) object classes (types)
Attributes
Methods (interface)

+ Constructor and destructor
® Then we instantiate the class (declare variables)

m e.g., fract is a variable of type Fraction
frac1 is the instance,
Fraction is the class

0
TRINITY
WVAFSTFR M

W INIVERSITY CMPT14x: objects 31 Oct 2007

10



More on Iinstantiating classes

¢ class Date: bob

first: Bob
day =0 \, last: Smith

month =0 ID: 2389
year =0 bday:

¢ class StudentRecord:
firstName = "" \ day: 12
lastName = "" month: 5
ID = 0 year: 1986

birthdate = Date()
®m Creating a new StudentRecord makes a new Date:
+ bob = StudentRecord()
+ bob.birthdate.year = 1986

A0

V TRINITY
WESTERN .
o HNIUF_RC-ITV CMPT14x: objects 31 Oct 2007



Objects are mutable: copy vs. alias

®m Objects are mutable:

¢ student1.ID = 25
¢ student1.ID = 38

® This means assignment is just aliasing:

¢ student2 = student1
+ student2.ID = 50 # affects student1.ID

® To make a separate copy, use copy.deepcopy():
+ import copy
+ student2 = copy.deepcopy(student1)

®m Or create a new instance, and copy values:

+ student2 = StudentRecord()

¢ student2.ID = student1.ID
4
TRIMNITY
WESTERM

B INIERSITY CMPT14x: objects 31 Oct 2007

12



More on copy vs. alias

® Assignment: alias

¢ larry = bob

bob

N

larry

m copy.copy(): shallow copy
¢ larry = copy.copy(bob)

B copy.deepcopy(): deep copy
+ larry = copy.deepcopy(bob)

bob

s

A0

first: Bob
last: Smith
ID: 2389
bday:

& TRINITY

WESTERN
= LINIVERSITY

day: 12
month: 5
year: 1986

larry

>

CMPT14x: objects

first: Bob
Ias.t: Smith day: 12
Lok 2?_’89 | month: 5
bday: year: 1986
bob larry
first: Bob first: Bob
\» last: Smith \» last: Smith
ID: 2389 ID: 2389
bday:\ bday: \
M day: 12 4/
month: 5
year: 1986
first: Bob
last: Smith
ID: 2389 day: 12
bday: month: 5
year: 1986
31 Oct 2007 13




Using 'id’ to look at aliases

B \We can check whether two names are aliases or
separate copies by using the Python built-in "id":

¢ id(student1) # 11563216
+ student2 = student1 # alias
¢ id(student2) # 11563216
+ student2 = copy.deepcopy(student1) # copy
¢ id(student2) # 18493888
¢ TRINITY
V WESTERN CMPT14x: objects 31 Oct 2007

W INIVERSITY

14



Creating a list of objects

B Qur student db is a list of StudentRecords

®m Because of aliasing, we can't use this shortcut:

¢ student = StudentRecord()
¢ studentDB = [student] * 35

A list of 35 aliases to the same object!

m Use a for loop to create separate objects:

+ studentDB =[0] * 35
¢ for idx in range(len(studentDB)):
studentDBJ[idx] = StudentRecord()

i
TRINITY
VWESTFR M

W INIVERSITY CMPT14x: objects 31 Oct 2007

15



Review from today (Py ch15)

® Object-oriented programming paradigm
m Objects, methods, attributes

m Classes, instances

m Alias vs. shallow copy vs. deep copy

e
TRINITY
VAFSTFRM

N INVERSITY CMPT14x: objects

31 Oct 2007

16



TODO items

m Register for CMPT145 if you haven't already
m Lab06 due tonight
m Lab07 due next \Wed: ch9 (choose one):
#37+38: people db, matching
#40+41: online chequebook
#46: church directory
m Paper topic due next week Fri 9Nov
m |Lab10 due last week of classes:
Choose one from Lab04-07, do in M2

e
TRINITY
VAFSTFRM

W INIVERSITY CMPT14x: objects 31 Oct 2007

17



