
Py ch15:Py ch15:
Object-Oriented ProgrammingObject-Oriented Programming

31 Oct 2007
CMPT14x
Dr. Sean Ho
Trinity Western University



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 22

Quiz05: ch7-8 Quiz05: ch7-8 (10 mins, 20 pts)(10 mins, 20 pts)

 In C, why should you always allocate strings
(arrays of char) to be at least one char longer than the 
longest string you'll need to store?

● What could happen if you don't?

 Convert 1100 1011 from binary to both hexadecimal 
and octal, in Python form.

 Express 2Mb/sec in bytes/sec (binary units, not SI)
 (you may express your answer in powers of 2)

 Write a Python function that returns a random integer 
between -100 and 100, inclusive.



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 33

Quiz05: answers #1-2Quiz05: answers #1-2

 In C, why should you always allocate strings
(arrays of char) to be at least one char longer than the 
longest string you'll need to store?

● Need to store null character to terminate string

● If don't, won't know when to stop when reading 
string; may overwrite other memory when writing

 Convert 1100 1011 from binary to both hexadecimal 
and octal, in Python form.

● hex: 0xCB

● oct: 0313



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 44

Quiz05: answers #3-4Quiz05: answers #3-4

 Express 2Mb/sec in bytes/sec (binary units, not SI)

● 218 bytes/sec

 Write a Python function that returns a random integer 
between -100 and 100, inclusive.

 def randint():
from random import random

return 200*int(random.random()) - 100



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 55

Stonybrook M2 environmentStonybrook M2 environment

 The Stonybrook M2 software is installed on TWU lab 
PCs (Start->Programs->Computing)

 Stonybrook orientation: 
http://twu.seanho.com/05fall/cmpt14x/stonybrook/

 Start with an empty project file: 
http://twu.seanho.com/05fall/cmpt14x/stonybrook/M2Project.sbp

 You can have multiple programs and libraries in one 
project; all modules in the same project can import 
from one another

 Create a new program module in this project:

● File->New Module: Program module type

http://twu.seanho.com/05fall/cmpt14x/stonybrook/
http://twu.seanho.com/05fall/cmpt14x/stonybrook/M2Project.sbp


31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 66

Records in Python: ClassesRecords in Python: Classes

 In Python, classes are user-defined types:
 class StudentRecord:

● firstName = ""
● lastName = ""
● ID = 0
● year = 0

● Instantiate a new object of type StudentRecord:
 student1 = StudentRecord()

 student1.firstName = 'Tom'

 student1 is an instance of the class StudentRecord

● “x is a variable of type int”



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 77

Object-oriented programmingObject-oriented programming

 Procedural paradigm: programs as lists of actions

● Focus is on the procedures (verbs)

● Variables, data structures get passed into 
procedures
 e.g.: string.upper('hello')

 Object-oriented paradigm: collections of objects

● Focus is on the data (nouns)

● Messages get passed between objects

● Procedures are methods belonging to objects
 e.g.: 'hello'.upper()



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 88

Everything is an objectEverything is an object

 In object-oriented programming, all data are objects:

● Variables, procedures, even libraries

 We make things happen by passing messages 
between objects

 myFile.read(16)
 appleName.upper()

 The object itself defines what messages it accepts: 
these are called its methods

● e.g., files have read(), write(), etc.
strings have upper(), len(), etc.

main
program

myFile

numApples

upper()

file

read()

string



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 99

Methods and attributesMethods and attributes

 Everything you can do with an object is encapsulated 
in its object definition

● Methods make up the interface to the object

 Objects can also have attributes (variables)

 Our fractions.py ADT example:

● Methods: get_n(), get_d(), add(), mult(), etc.
 Everything you need to interact with a Fraction

● Attributes: tuple (n,d)
 Could also have two separate attributes:

num, denom



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1010

Classes and instancesClasses and instances

 We define (declare) object classes (types)

● Attributes

● Methods (interface)
 Constructor and destructor

 Then we instantiate the class (declare variables)

 e.g., frac1 is a variable of type Fraction

● frac1 is the instance,

● Fraction is the class



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1111

More on instantiating classesMore on instantiating classes

 class Date:
● day = 0
● month = 0
● year = 0

 class StudentRecord:
● firstName = ""
● lastName = ""
● ID = 0
● birthdate = Date()

 Creating a new StudentRecord makes a new Date:
 bob = StudentRecord()

 bob.birthdate.year = 1986

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1212

Objects are mutable: copy vs. aliasObjects are mutable: copy vs. alias

 Objects are mutable:
 student1.ID = 25

 student1.ID = 38

 This means assignment is just aliasing:
 student2 = student1

 student2.ID = 50 # affects student1.ID

 To make a separate copy, use copy.deepcopy():
 import copy

 student2 = copy.deepcopy(student1)

 Or create a new instance, and copy values:
 student2 = StudentRecord()

 student2.ID = student1.ID



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1313

 Assignment: alias
 larry = bob

 copy.copy(): shallow copy
 larry = copy.copy(bob)

 copy.deepcopy(): deep copy
 larry = copy.deepcopy(bob)

More on copy vs. aliasMore on copy vs. alias
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob
first: Bob
last: Smith
ID: 2389
bday:

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob larry
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1414

Using 'id' to look at aliasesUsing 'id' to look at aliases

 We can check whether two names are aliases or 
separate copies by using the Python built-in 'id':

 id(student1) # 11563216

 student2 = student1 # alias

 id(student2) # 11563216

 student2 = copy.deepcopy(student1) # copy

 id(student2) # 18493888



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1515

Creating a list of objectsCreating a list of objects

 Our student db is a list of StudentRecords

 Because of aliasing, we can't use this shortcut:
 student = StudentRecord()
 studentDB = [student] * 35

● A list of 35 aliases to the same object!

 Use a for loop to create separate objects:
 studentDB = [0] * 35
 for idx in range(len(studentDB)):

● studentDB[idx] = StudentRecord()



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1616

Review from today (Py ch15)Review from today (Py ch15)

 Object-oriented programming paradigm

 Objects, methods, attributes

 Classes, instances

 Alias vs. shallow copy vs. deep copy



31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1717

TODO itemsTODO items

 Register for CMPT145 if you haven't already

 Lab06 due tonight

 Lab07 due next Wed: ch9 (choose one):

● #37+38: people db, matching

● #40+41: online chequebook

● #46: church directory

 Paper topic due next week Fri 9Nov

 Lab10 due last week of classes:

● Choose one from Lab04-07, do in M2


