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Quiz05: ch7-8 (10 mins, 20 pts)

® |In C, why should you always allocate strings
(arrays of char) to be at least one char longer than the
longest string you'll need to store?

What could happen if you don't?

m Convert 1100 1011 from binary to both hexadecimal
and octal, in Python form.

m Express 2Mb/sec in bytes/sec (binary units, not Sl)
(you may express your answer in powers of 2)

® Write a Python function that returns a random integer
between -100 and 100, inclusive.
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Quiz05: answers #1-2

® |In C, why should you always allocate strings
(arrays of char) to be at least one char longer than the
longest string you'll need to store?

Need to store null character to terminate string

If don't, won't know when to stop when reading
string; may overwrite other memory when writing

m Convert 1100 1011 from binary to both hexadecimal
and octal, in Python form.

hex: OxCB
oct: 0313
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Quiz05: answers #3-4

m Express 2Mb/sec in bytes/sec (binary units, not Sl)
2'% bytes/sec

® Write a Python function that returns a random integer
between -100 and 100, inclusive.

+ def randint():

from random import random
return 200%int(random.random()) - 100
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Stonybrook M2 environment

® The Stonybrook M2 software is installed on TWU lab
PCs (Start->Programs->Computing)

m Stonybrook orientation:
http://twu.seanho.com/05fall/cmpt14x/stonybrook/

m Start with an empty project file:
http://twu.seanho.com/05fall/cmpt14x/stonybrook/M2Project.sbp

® You can have multiple programs and libraries in one
project; all modules in the same project can import
from one another

® Create a new program module in this project:

File->New Module: Program module type
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Records in Python: Classes

® In Python, classes are user-defined types:

¢ class StudentRecord:

firstName =
lastName =
ID=0
year =0
® Instantiate a new object of type StudentRecord:
¢ student1 = StudentRecord()
+ student1.firstName = 'Tom'

B studenti is an instance of the class StudentRecord

® “x is a variable of type int”

09
TRINITY
WESTERN

CMPT14x: object 31 Oct 2007
W INIVERSITY X+ OBJECES ¢



Object-oriented programming

® Procedural paradigm: programs as lists of actions
Focus is on the procedures (verbs)

Variables, data structures get passed into
procedures

¢ e.g.: string.upper(‘hello’)
m Object-oriented paradigm: collections of objects
Focus is on the data (nouns)
Messages get passed between objects

Procedures are methods belonging to objects

¢ e.g.: 'hello’.upper()
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Everything Is an object

® |n object-oriented programming, all data are objects:
Variables, procedures, even libraries

® \We make things happen by passing messages
between objects

+ myFile.read(16)

myFile )

read()

20

+ appleName.upper() e
_ _ _ program
® The object itself defines what ressages | S
these are called its methods "”m’:'f’p'es
string
e.g., files have read(), write(), etc.
strings have upper(), len(), etc.
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Methods and attributes

®m Everything you can do with an object is encapsulated
In its object definition

Methods make up the interface to the object
® Objects can also have attributes (variables)
® Qur fractions.py ADT example:

Methods: get _n(), get d(), add(), mult(), etc.

+ Everything you need to interact with a Fraction
Attributes: tuple (n,d)

+ Could also have two separate attributes:
num, denom
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Classes and instances

®m We define (declare) object classes (types)
Attributes
Methods (interface)

+ Constructor and destructor
® Then we instantiate the class (declare variables)

m e.g., fract is a variable of type Fraction
frac1 is the instance,
Fraction is the class
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More on Iinstantiating classes

¢ class Date: bob

first: Bob
day =0 \, last: Smith

month =0 ID: 2389
year =0 bday:

¢ class StudentRecord:
firstName = "" \ day: 12
lastName = "" month: 5
ID = 0 year: 1986

birthdate = Date()
®m Creating a new StudentRecord makes a new Date:
+ bob = StudentRecord()
+ bob.birthdate.year = 1986
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Objects are mutable: copy vs. alias

®m Objects are mutable:

¢ student1.ID = 25
¢ student1.ID = 38

® This means assignment is just aliasing:

¢ student2 = student1
+ student2.ID = 50 # affects student1.ID

® To make a separate copy, use copy.deepcopy():
+ import copy
+ student2 = copy.deepcopy(student1)

®m Or create a new instance, and copy values:

+ student2 = StudentRecord()

¢ student2.ID = student1.ID
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More on copy vs. alias

® Assignment: alias

¢ larry = bob

bob

N

larry

m copy.copy(): shallow copy
¢ larry = copy.copy(bob)

B copy.deepcopy(): deep copy
+ larry = copy.deepcopy(bob)

bob

s

A0

first: Bob
last: Smith
ID: 2389
bday:
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day: 12
month: 5
year: 1986

larry

>

CMPT14x: objects

first: Bob
Ias.t: Smith day: 12
Lok 2?_’89 | month: 5
bday: year: 1986
bob larry
first: Bob first: Bob
\» last: Smith \» last: Smith
ID: 2389 ID: 2389
bday:\ bday: \
M day: 12 4/
month: 5
year: 1986
first: Bob
last: Smith
ID: 2389 day: 12
bday: month: 5
year: 1986
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Using 'id’ to look at aliases

B \We can check whether two names are aliases or
separate copies by using the Python built-in "id":

¢ id(student1) # 11563216
+ student2 = student1 # alias
¢ id(student2) # 11563216
+ student2 = copy.deepcopy(student1) # copy
¢ id(student2) # 18493888
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Creating a list of objects

B Qur student db is a list of StudentRecords

®m Because of aliasing, we can't use this shortcut:

¢ student = StudentRecord()
¢ studentDB = [student] * 35

A list of 35 aliases to the same object!

m Use a for loop to create separate objects:

+ studentDB =[0] * 35
¢ for idx in range(len(studentDB)):
studentDBJ[idx] = StudentRecord()
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Review from today (Py ch15)

® Object-oriented programming paradigm
m Objects, methods, attributes

m Classes, instances

m Alias vs. shallow copy vs. deep copy
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TODO items

m Register for CMPT145 if you haven't already
m Lab06 due tonight
m Lab07 due next \Wed: ch9 (choose one):
#37+38: people db, matching
#40+41: online chequebook
#46: church directory
m Paper topic due next week Fri 9Nov
m |Lab10 due last week of classes:
Choose one from Lab04-07, do in M2
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