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Classes and instancesClasses and instances

 We define (declare) object classes (types)

● Attributes

● Methods (interface)
 Constructor and destructor

 Then we instantiate the class (declare variables)

 e.g., frac1 is a variable of type Fraction

● frac1 is the instance,

● Fraction is the class
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More on instantiating classesMore on instantiating classes

 class Date:
● day = 0
● month = 0
● year = 0

 class StudentRecord:
● firstName = ""
● lastName = ""
● ID = 0
● birthdate = Date()

 Creating a new StudentRecord makes a new Date:
 bob = StudentRecord()

 bob.birthdate.year = 1986

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob
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 Assignment: alias
 larry = bob

 copy.copy(): shallow copy
 larry = copy.copy(bob)

 copy.deepcopy(): deep copy
 larry = copy.deepcopy(bob)

More on copy vs. aliasMore on copy vs. alias
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob
first: Bob
last: Smith
ID: 2389
bday:

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob larry
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986
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Using 'id' to look at aliasesUsing 'id' to look at aliases

 We can check whether two names are aliases or 
separate copies by using the Python built-in 'id':

 id(student1) # 11563216

 student2 = student1 # alias

 id(student2) # 11563216

 student2 = copy.deepcopy(student1) # copy

 id(student2) # 18493888
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Creating a list of objectsCreating a list of objects

 Our student db is a list of StudentRecords

 Because of aliasing, we can't use this shortcut:
 student = StudentRecord()
 studentDB = [student] * 35

● A list of 35 aliases to the same object!

 Use a for loop to create separate objects:
 studentDB = [0] * 35
 for idx in range(len(studentDB)):

● studentDB[idx] = StudentRecord()
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Creating a Fractions ADTCreating a Fractions ADT

 In ch6 we sketched a Fractions library

● Fractions were really tuples

● Hard to hide that from the user

 OO lets us do fractions the 'right' way:

● Fractions class:

● Two attributes: num, denom

● Methods: add, sub, mul, div

● Constructor method: calls __init__()
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OO: MethodsOO: Methods

 In OO, procedures are methods of an object:

● Messages that can be passed to the object

● Defined within the class declaration

 First parameter to the method is always a reference to 
the current object: 'self'

 class Fraction:

def __str__(self):

"""A pretty-printed form of the fraction."""
return "%d / %d" % (num, denom)

 __str__ is an example of a customization:

● Gets called by print
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Listing all entities in a classListing all entities in a class

 Special Python attribute '__dict__'

 Dictionary of all entities in the class
 import math
 math.__dict__

● Lists all functions, constants, etc.

● Can be very long for some modules!
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Creating a new classCreating a new class

 Most class definitions will have __init__ and __str__:
class Fraction:

def __init__(self):
self.numer = 0
self.denom = 1

def __str__(self):
return '%d / %d' % (self.numer, self.denom)

 Refer to instance variables via self.variable

 Docstrings for __init__ and __str__ are not usually 
needed unless something special is happening
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Instantiating our new classInstantiating our new class

 We can now make an instance of our class:
 f1 = Fraction()
 f1.numer = 2
 f2.denom = 3
 print f1 # 2 / 3
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Adding a method: multiply()Adding a method: multiply()

 Multiply takes two parameters: self, and the other 
fraction to add.

● This definition goes inside the class definition:
def multiply(self, f2):

"""Multiply two fractions."""
product = Fraction()
product.numer = self.numer * f2.numer
product.denom = self.denom * f2.denom
return product

● Need to create a new Fraction to return as the 
result



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1313

Using the multiply() methodUsing the multiply() method

 We can now multiply two fractions:
 print f1 # 2 / 3
 f2 = Fraction()
 f2.numer = 1
 f2.denom = 2
 print f1.multiply(f2) # 2 / 6
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Python customizationsPython customizations

 Certain method names are special in Python:
 __init__: Called by the constructor when we setup a new 

instance
 __str__: Called by print
 __mul__: Overloads the (*) operator
 __add__: Overloads the (+) operator
 __le__: Overloads the (<) operator
 etc. (pretty much any operator can be overloaded!)

● http://docs.python.org/ref/specialnames.html

http://docs.python.org/ref/specialnames.html
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Using customizationsUsing customizations

 So if we name our multiply() method __mul__() 
instead, we can do:

 print f1 # 2 / 3
 print f2 # 1 / 2
 print f1 * f2 # 2 / 6
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Parameters to the constructorParameters to the constructor

 We can pass parameters to the constructor:
 f1 = Fraction(2,3)

 We just need to extend the __init__ function to accept 
more parameters:

 def __init__(self, n, d):
● self.numer = n
● self.denom = d
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Default parametersDefault parameters

 Python functions can specify defaults for the tail-end 
parameters:

 def __init__(self, n=0, d=1):
● self.numer = n
● self.denom = d

 If __init__ is called with no parameters, n=0 d=1

 If __init__ is called with one parameter:

● n is given and d=1

 If __init__ is called with two parameters:

● both n and d are given.
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TODO itemsTODO items

 HW07 due Mon: ch9 #6, 8, 16 (in Python).

 Lab07 due next Wed: ch9 (choose one):

● #37+38: people db, matching

● #40+41: online chequebook

● #46: church directory

 Paper topic due next week Fri 9Nov

 Lab10 due last week of classes:

● Choose one from Lab04-07, do in M2


