
Py ch16-17:Py ch16-17:
Making an ADT the OO WayMaking an ADT the OO Way

2 Nov 2007
CMPT14x
Dr. Sean Ho
Trinity Western University



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 22

Classes and instancesClasses and instances

 We define (declare) object classes (types)

● Attributes

● Methods (interface)
 Constructor and destructor

 Then we instantiate the class (declare variables)

 e.g., frac1 is a variable of type Fraction

● frac1 is the instance,

● Fraction is the class



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 33

More on instantiating classesMore on instantiating classes

 class Date:
● day = 0
● month = 0
● year = 0

 class StudentRecord:
● firstName = ""
● lastName = ""
● ID = 0
● birthdate = Date()

 Creating a new StudentRecord makes a new Date:
 bob = StudentRecord()

 bob.birthdate.year = 1986

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 44

 Assignment: alias
 larry = bob

 copy.copy(): shallow copy
 larry = copy.copy(bob)

 copy.deepcopy(): deep copy
 larry = copy.deepcopy(bob)

More on copy vs. aliasMore on copy vs. alias
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob
first: Bob
last: Smith
ID: 2389
bday:

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob larry
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 55

Using 'id' to look at aliasesUsing 'id' to look at aliases

 We can check whether two names are aliases or 
separate copies by using the Python built-in 'id':

 id(student1) # 11563216

 student2 = student1 # alias

 id(student2) # 11563216

 student2 = copy.deepcopy(student1) # copy

 id(student2) # 18493888



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 66

Creating a list of objectsCreating a list of objects

 Our student db is a list of StudentRecords

 Because of aliasing, we can't use this shortcut:
 student = StudentRecord()
 studentDB = [student] * 35

● A list of 35 aliases to the same object!

 Use a for loop to create separate objects:
 studentDB = [0] * 35
 for idx in range(len(studentDB)):

● studentDB[idx] = StudentRecord()



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 77

Creating a Fractions ADTCreating a Fractions ADT

 In ch6 we sketched a Fractions library

● Fractions were really tuples

● Hard to hide that from the user

 OO lets us do fractions the 'right' way:

● Fractions class:

● Two attributes: num, denom

● Methods: add, sub, mul, div

● Constructor method: calls __init__()



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 88

OO: MethodsOO: Methods

 In OO, procedures are methods of an object:

● Messages that can be passed to the object

● Defined within the class declaration

 First parameter to the method is always a reference to 
the current object: 'self'

 class Fraction:

def __str__(self):

"""A pretty-printed form of the fraction."""
return "%d / %d" % (num, denom)

 __str__ is an example of a customization:

● Gets called by print



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 99

Listing all entities in a classListing all entities in a class

 Special Python attribute '__dict__'

 Dictionary of all entities in the class
 import math
 math.__dict__

● Lists all functions, constants, etc.

● Can be very long for some modules!



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1010

Creating a new classCreating a new class

 Most class definitions will have __init__ and __str__:
class Fraction:

def __init__(self):
self.numer = 0
self.denom = 1

def __str__(self):
return '%d / %d' % (self.numer, self.denom)

 Refer to instance variables via self.variable

 Docstrings for __init__ and __str__ are not usually 
needed unless something special is happening



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1111

Instantiating our new classInstantiating our new class

 We can now make an instance of our class:
 f1 = Fraction()
 f1.numer = 2
 f2.denom = 3
 print f1 # 2 / 3





2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1212

Adding a method: multiply()Adding a method: multiply()

 Multiply takes two parameters: self, and the other 
fraction to add.

● This definition goes inside the class definition:
def multiply(self, f2):

"""Multiply two fractions."""
product = Fraction()
product.numer = self.numer * f2.numer
product.denom = self.denom * f2.denom
return product

● Need to create a new Fraction to return as the 
result



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1313

Using the multiply() methodUsing the multiply() method

 We can now multiply two fractions:
 print f1 # 2 / 3
 f2 = Fraction()
 f2.numer = 1
 f2.denom = 2
 print f1.multiply(f2) # 2 / 6



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1414

Python customizationsPython customizations

 Certain method names are special in Python:
 __init__: Called by the constructor when we setup a new 

instance
 __str__: Called by print
 __mul__: Overloads the (*) operator
 __add__: Overloads the (+) operator
 __le__: Overloads the (<) operator
 etc. (pretty much any operator can be overloaded!)

● http://docs.python.org/ref/specialnames.html

http://docs.python.org/ref/specialnames.html


2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1515

Using customizationsUsing customizations

 So if we name our multiply() method __mul__() 
instead, we can do:

 print f1 # 2 / 3
 print f2 # 1 / 2
 print f1 * f2 # 2 / 6



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1616

Parameters to the constructorParameters to the constructor

 We can pass parameters to the constructor:
 f1 = Fraction(2,3)

 We just need to extend the __init__ function to accept 
more parameters:

 def __init__(self, n, d):
● self.numer = n
● self.denom = d



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1717

Default parametersDefault parameters

 Python functions can specify defaults for the tail-end 
parameters:

 def __init__(self, n=0, d=1):
● self.numer = n
● self.denom = d

 If __init__ is called with no parameters, n=0 d=1

 If __init__ is called with one parameter:

● n is given and d=1

 If __init__ is called with two parameters:

● both n and d are given.



2 Nov 20072 Nov 2007CMPT14x: making an ADTCMPT14x: making an ADT 1818

TODO itemsTODO items

 HW07 due Mon: ch9 #6, 8, 16 (in Python).

 Lab07 due next Wed: ch9 (choose one):

● #37+38: people db, matching

● #40+41: online chequebook

● #46: church directory

 Paper topic due next week Fri 9Nov

 Lab10 due last week of classes:

● Choose one from Lab04-07, do in M2


