
§12.1-12.5: Pointers§12.1-12.5: Pointers

16 Nov 2007
CMPT14x
Dr. Sean Ho
Trinity Western University

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 22

Quiz08Quiz08

 Contrast: alias, shallow copy, deep copy.

● Draw or describe an example highlighting the
differences

 What name does Python expect for the initializer
(constructor) method in a user-defined class?

 Create a Python dictionary with three entries.

 Name at least three methods special to dictionaries.

 Write a Python code snippet that throws and catches
an exception.

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 33

Review last time (Py tut §9.2)Review last time (Py tut §9.2)

 Namespaces

 Scope

● New names add to local scope

● Names outside local scope are read-only
 Assigning to them makes a local copy

● global command

 Backtracking: Knight's Tour

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 44

What's on for today (12.1-12.5)What's on for today (12.1-12.5)

 Pointers (in Modula-2 and C)

● Creating pointers, dereferencing pointers

● Assignment compatibility

● Pointer arithmetic

● NIL (in C: NULL)

 Static vs. dynamic allocation of memory

● Activation records

● Stack, stack pointer

 Dynamic variables: NEW(), DISPOSE()

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 55

PointersPointers

 Values are stored in locations in memory

 These locations are accessed by their addresses,
which point to a spot in memory

 A pointer is a variable whose value is a memory
address:

VAR
applePtr : POINTER TO REAL;

apple : REAL;

BEGIN
apple := 5.0;

applePtr := SYSTEM.ADR (apple);

0x3e 5.0

applePtr apple

0x3e

0x3f

0x40

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 66

Dereferencing pointersDereferencing pointers

 The last example shows how to make a pointer:
VAR

applePtr : POINTER TO REAL;

apple : REAL;

BEGIN

apple := 5.0;

applePtr := SYSTEM.ADR (apple);

 How do we get at the memory pointed to?
applePtr^ := 4.0; (* same as apple := 4.0 *)

 (C syntax: *applePtr)

● The “hat” operator ^ is called the dereferencing
operator

In C:

float apple;

float* applePtr;

apple = 5.0;

applePtr = &apple;

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 77

Operations on pointersOperations on pointers

 Different pointer types are not compatible

● But can always cast from one type to another:
float* applePtr;

int* pearPtr;

applePtr = (float*) pearPtr;

 NIL points to nothing at all

● Handy for initializing pointers: ptr1 := NIL;

● Dereferencing NIL raises sysException

● In C, use NULL (which is just 0)

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 88

Pointers and C arraysPointers and C arrays

 An array in C is really just a pointer to a location in
memory that stores consecutive entries of the array:

float appleSizes[4];

appleSizes[0] = 2.5;

● Indexing into the array is really done by adding to
the pointer to the head of the array:

appleSizes[2]
 Is the same as:

*(appleSizes + 2)

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 99

Pointers and call-by-referencePointers and call-by-reference

 Pointers are how call-by-reference is done in C:
int increment (int* x) { /* takes a pointer to an int */

*x = *x + 1;
return *x;

}

int x;

x = 5;

increment (&x); /* pass a pointer to x */

 In C++, can specify in the function definition:
int increment (int &x) { /* call-by-reference */

x = x + 1;
increment (x);

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 1010

Static vs. dynamic memoryStatic vs. dynamic memory

 Static variables are allocated at the beginning of the
program run

● Their size in memory is fixed at compile-time

● Variables named in declaration section

 Dynamic variables are allocated during the running of
a program

● May also be deallocated during program

● Size need not be predetermined

● Reference them via pointers

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 1111

Dynamic variablesDynamic variables

 You can make your own dynamically allocated
variables, using NEW() and DISPOSE():

VAR

applePtr : POINTER TO REAL;

BEGIN

NEW (applePtr);

 Allocates memory for a REAL, and stores the address in
applePtr

DISPOSE (applePtr);

 Deallocates the memory, and sets applePtr to NIL

● Dynamic variables are in the heap:
 Open space for program to allocate/deallocate

● If heap is full, NEW sets pointer to NIL

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 1212

A caution about pointersA caution about pointers

 Pointers are a powerful tool and a quick way to shoot
yourself in the foot:

VAR
applePtr : POINTER TO REAL;

BEGIN
applePtr^ := 5.0; (* yipes! *)

● Uninitialized pointer could point to anywhere in
memory: dereferencing it can potentially modify any
accessible memory!
 Can crash older Windows; core dump in Unix

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 1313

Review of today (12.1-12.5)Review of today (12.1-12.5)

 Pointers (in Modula-2 and C)

● Creating pointers, dereferencing pointers

● Assignment compatibility

● Pointer arithmetic

● NIL (in C: NULL)

 Static vs. dynamic allocation of memory

● Activation records

● Stack, stack pointer

 Dynamic variables: NEW(), DISPOSE()

16 Nov 200716 Nov 2007CMPT14x: pointersCMPT14x: pointers 1414

TODOTODO

 No lab next week

 Midterm next Wed 21Nov:

