
M2 ch14: Queues and StacksM2 ch14: Queues and Stacks

30 Nov 2007
CMPT14x
Dr. Sean Ho
Trinity Western University

30 Nov 200730 Nov 2007CMPT14x: queues and stacksCMPT14x: queues and stacks 22

Review of last time: §14.7-14.8Review of last time: §14.7-14.8

 Trees:

● Definition of terms:
 Parent, children, root, leaves, degree, depth, level, forest

● Depth-first vs. breadth-first search

● Binary trees: pre/in/post-order traversal

● Binary search trees (BST):
 Type definition
 Search, Insert, Delete
 Algorithmic efficiency of BST Search

30 Nov 200730 Nov 2007CMPT14x: queues and stacksCMPT14x: queues and stacks 33

QueuesQueues

 A queue is a list-like data structure where items added
first to the queue are withdrawn first

 First-in / first-out: FIFO

 e.g., waiting in line for a bank teller

 Operations:

● put(): add an item to the end of the queue

● get(): withdraw item at the head of the queue

● empty(), full(), size(): check number of items

Item3 Item2Item4 Item1
put() get()

30 Nov 200730 Nov 2007CMPT14x: queues and stacksCMPT14x: queues and stacks 44

Implementing queuesImplementing queues

 Use a subclass of linked-lists (inheritance)
class Queue(LinkedList):

 Implement put()/get() using linked-list operations:
def put(self, data):

self.insert(self.size, data) # insert at tail
def get(self):

data = self.head.data # save the payload
self.delete(0) # delete first node
return data

 M2 book gives a different implementation using
dynamic arrays

30 Nov 200730 Nov 2007CMPT14x: queues and stacksCMPT14x: queues and stacks 55

StacksStacks

 A stack is like a queue, but items added last to the
stack are withdrawn first

 Last-in / first-out: LIFO

 e.g., RPN calculator

 Operations:

● push(): add an item to the top of the stack

● pop(): withdraw item from the top of the stack

● empty(), full(), size(): check number of items

Item1

push() pop()

Item2

Item3

30 Nov 200730 Nov 2007CMPT14x: queues and stacksCMPT14x: queues and stacks 66

Implementing stacksImplementing stacks

 Could use either linked-lists or arrays
class Stack:

def __init__(self, maxsize=1):

self.stack = range(maxsize) # allocate new array
self.top = -1 # index of top of stack

 push()/pop() from the array:
def push(self, data): # what if array is full?

self.top += 1
self.stack[self.top] = data # push onto top

def pop(self):

self.top -= 1
return self.stack[top+1]

30 Nov 200730 Nov 2007CMPT14x: queues and stacksCMPT14x: queues and stacks 77

Using Python lists for queues/stacksUsing Python lists for queues/stacks

 Most languages will only have arrays and pointers

● Use pointers to build a linked-list ADT

● Use either arrays or linked-lists
to make queue or stack ADT

 Python lists are special

● Provide many of the advantages of linked-lists

● Can use Python lists naturally as queues/stacks

● Stack: .append(), .pop() (pops from tail)

● Queue: .append(), .pop(0) (pops from head)
 See Py tut 5.1

http://docs.python.org/tut/node7.html

30 Nov 200730 Nov 2007CMPT14x: queues and stacksCMPT14x: queues and stacks 88

TODOTODO

 Paper due next Mon 3Dec

 Lab10 due next Wed 5Dec:

● Implement one of your old Lab04-07 in M2

● Full lab-writeup (may reuse parts of old writeup)

 Final exam next Sat 8Dec: 9-11am Neu37

