
Parallel computing memory Parallel computing memory 
modelsmodels

23 January 2007
CMPT370
Dr. Sean Ho
Trinity Western University

● Lab1 due tonight



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 22

Review last timeReview last time

 Parallel computing concepts
● Why do parallel?
● vonNeumann abstraction: instructions, data
● Instruction parallelism vs. data parallelism

 Flynn's taxonomy: SISD, SIMD, MISD, MIMD

● Measuring speedup
● Design issues

 See tutorial from LLNL (Livermore) 
supercomputing centre

http://www.llnl.gov/computing/tutorials/parallel_comp/


23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 33

What's on for todayWhat's on for today

 Memory models:
● Shared (SMP)
● Distributed (cluster)
● Hybrid

 Programming models:
● Threads (PThreads, OpenMP)
● Message passing (MPI)
● Data-parallel (HPF)
● Hybrids

 Automatic vs. manual parallelization



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 44

Shared memoryShared memory

 All processors share a
global memory space:
● Uniform addressing

 Communication is easy: read/write to fixed addr
● Still need locking/synchronization

 UMA: uniform memory access (SMP)
● Equal latency, bandwidth to memory

 NUMA: non-uniform memory access
● Access to local memory is faster
● CC-NUMA: cache-coherent (SGI Origin hypercube)



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 55

Pros/cons of shared memoryPros/cons of shared memory

 Pros:
● Simpler model: easier to program (OpenMP)
● Multi-processor SMP boards make for fast 

memory access
 Carmel's “8” processors: One board, two Intel Xeon 

chips, each with dual-core, each core with two 
HyperThreads

 Cons:
● Doesn't scale well to hundreds of processors

 Geometric explosion of communication links 
between CPUs and memory



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 66

Distributed memoryDistributed memory

 Each processor has its
own memory space

 Access other memory
by passing messages to its controlling CPU

 Coarse-granularity parallelism is desired

 Network fabric is important:
● Ethernet (802.3): CSMA-CD: doesn't scale well!
● Myrinet: low latency, low packet overhead
● InfiniBand: switched; has features like QoS
● SCI (Scalable Coherent Interconnect):

low overhead bus



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 77

Pros/cons of distributed memoryPros/cons of distributed memory

 Pros:
● Scales well to hundreds or thousands of CPUs

 LLNL BlueGene/L

 Cons:
● Complex to program! (MPI)

 Explicit parallelism: programmer's responsibility to 
coordinate communication between processors

 How to span a big data structure across memories?

● Memory access times very non-uniform
 Importance of the network fabric:

Sun: “the network is the computer”



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 88

Hybrid shared/distributedHybrid shared/distributed

 Most large supercomputers today use a hybrid:
● Each node is cache-coherent SMP (shared)
● Link nodes via network (distributed)



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 99

Case study: BlueGene/LCase study: BlueGene/L

 Made by IBM/Watson, site at LLNL

 Applications: fluid flow, nanotech, molecular 
biochemistry, etc.

 131072 procs, 280 Tflops sustained, 32 TB RAM,
1.5 MW in 2500 sqft

 Nodes networked as a
32x32x64 3D torus

 Also 12 login nodes (SuSE)
and 1204 disk I/O nodes (800 TB) (BlueGene/L homepage)

http://www.llnl.gov/asc/computing_resources/bluegenel/


23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1010

Programming a parallel machineProgramming a parallel machine

 The shared/distributed memory model deals with 
the address space visible by each processor

 The parallel programming model used is a 
separate issue:
● Threads (PThreads, OpenMP)
● Message passing (MPI)
● Data parallel (HPF)
● Hybrids of these models



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1111

ThreadsThreads

 Start with master thread

 Master forks off worker threads
● Each thread can be running same code or 

different code (e.g., subroutines)
 Scatter/gather: when worker threads complete, 

send results back to master thread

 Two implementations:
● POSIX Threads: library-based, explicit parallel
● OpenMP: compiler directives,

easier to “add-on” to serial code
 #pragma omp parallel



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1212

Message passingMessage passing

 All communication between nodes is via 
messages

 Explicit parallelism:
● Serial program must be restructured by 

programmer
 One unified standard implementation: MPI 

(Message Passing Interface)
● Library routines: MPI_Bcast(), MPI_Reduce()

 MPI homepage

http://www-unix.mcs.anl.gov/mpi/


23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1313

Data parallel modelData parallel model

 Each parallel task does same
work on a different portion
of a large regular data struct
● Vector, n-D array, etc.

 Use either compiler directives
or library routines to specify
parallelism

 Implementations: HPF (High performance Fortran)



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1414

Hybrid programming modelsHybrid programming models

 Memory models: shared vs. distributed

 Programming models: threads, MPI, data-parallel

 For clusters (distributed memory model),
MPI is most commonly used

 However, hybrid programming models exist:
● OpenMP to the programmer (ease of use)
● MPI at lower layer (cluster communications)

 HPF (data-parallel) on clusters often uses MPI as a 
transparent back-end



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1515

Writing a parallel programWriting a parallel program

 Designing a program to work and make full use 
of multiple processors is tough

 Fully automatic parallelizing compilers exist:
● Analyzes your code for parallel opportunities
● For loops, iteration over arrays, etc.

 Directives can make the compiler's job easier:
● #pragma delimits portions of code that have 

minimal dependencies (coarse granularity)
 The most control and speedup is from manually 

programming it: explicit parallelism



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1616

Summary of todaySummary of today

 Memory models:
● Shared (SMP)
● Distributed (cluster)
● Hybrid

 Programming models:
● Threads (PThreads, OpenMP)
● Message passing (MPI)
● Data-parallel (HPF)
● Hybrids

 Automatic vs. manual parallelization



23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1717

TODOTODO

 Lab1 due tonight
● Design + implement your own FLTK program
● Lab write-up


