
Parallel Programming:Parallel Programming:
Advanced TopicsAdvanced Topics

30 January 2007
CMPT370
Dr. Sean Ho
Trinity Western University



30 Jan 200730 Jan 2007CMPT370: communicationCMPT370: communication 22

Review last timeReview last time

 OpenMP
● #pragma omp parallel: begin parallel section

 #pragma omp for
 #pragma omp sections

● Shared vs. private variables
 private(), reduction()

● #pragma omp critical/single/barrier
● OMP_NUM_THREADS, omp_get_num_threads()
● Timing: omp_get_wtime()
● schedule(static/dynamic/guided/runtime)



30 Jan 200730 Jan 2007CMPT370: communicationCMPT370: communication 33

Addendum: timingAddendum: timing

 <time.h> clock(): CPU time with tick resolution
● Usually 100 or 1000 ticks/sec

 <time.h> time(): wall-clock time with second res

 <sys/time.h> gettimeofday():
● Wall-clock time in seconds with tick resolution

 double omp_get_wtime():
● Wall-clock time in seconds with tick resolution
● Platform independent
● Thread dependent



30 Jan 200730 Jan 2007CMPT370: communicationCMPT370: communication 44

Communication IssuesCommunication Issues

 I/O often the bottleneck: minimize 
communication

 Latency vs. bandwidth
● Coarse-grain parallelism: e.g., FoldingAtHome

 Unicast (point-to-point) vs. multicast

 Synchronous (blocking) vs.
asynchronous (non-blocking)

 Ease of programming
● OpenMP abstracts away from programmer
● MPI makes communication more explicit



30 Jan 200730 Jan 2007CMPT370: communicationCMPT370: communication 55

SynchronizationSynchronization

 Barrier
● Wait for all tasks to catch up

 Slowest task becomes weakest link

● Implicit barrier at end of each parallel section
 Lock/semaphore/mutex

● Only one thread can hold the lock at a time
● Wait (block) for lock to free before moving on
● e.g., #pragma omp critical

 Synchronous communications
● Both parties must synchronize



30 Jan 200730 Jan 2007CMPT370: communicationCMPT370: communication 66

Data ParallelismData Parallelism

 Some programs are not well parallelizable:
● e.g., Fibonacci(n): dependencies

 Some can still be parallelized, but with some 
communication required:
● Heat equation on a 2D grid

● Each pixel Ux,y +=

 Cx (Ux-1,y + Ux+1,y – 2*Ux,y) +

 Cy (Ux,y-1 + Ux,y+1 – 2*Ux,y)

● Used for blurring images



30 Jan 200730 Jan 2007CMPT370: communicationCMPT370: communication 77

Heat equation: boundariesHeat equation: boundaries

 Divide work by region of image:
● Data parallelism

 Interior of region can be done
independently

 Boundaries need information
from neighbouring threads

 Use non-blocking communication to send/receive 
boundary pixels from neighbours while 
processing interior



30 Jan 200730 Jan 2007CMPT370: communicationCMPT370: communication 88

TODOTODO

 Lab2 due next Tue 6Feb
● Design + implement your own OpenMP 

program
● Lab write-up


