
Architecture of a Graphics PipelineArchitecture of a Graphics Pipeline

6 February 2007
CMPT370
Dr. Sean Ho
Trinity Western University



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 22

Review last timeReview last time

 Visual computing:
● Computer graphics and image analysis

 Objectives of visual computing
● Capture and understand reality
● Emulate and enhance reality
● Parthenon video

 Image formation
● Camera model



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 33

What's on for todayWhat's on for today

 Light and colour models

 Geometric representation: trimesh

 Off-line rendering: raytracing, radiosity

 Real-time interactive graphics pipeline:
● Vertex processing
● Clipping and culling
● Rasterizing
● Fragment processing

 Graphics API overview (OpenGL)



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 44

Image formationImage formation

 Components to produce a static image:
● Objects

 Geometry (vertices, faces, etc.), material properties: 
colour, shininess, bumpiness, etc.

● Light sources
 Colour spectrum, direction,

area, etc.

● Viewer
 Camera model: lens,

depth of field, etc.



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 55

LightLight

 Visible light 
is electromagnetic radiation about 350-750nm in 
wavelength (~400 to 850 THz in frequency)

 Light colour is a frequency distribution of energy
● Lasers: monochromatic

 But our eyes only have four kinds of sensors:
● Rods: luminance (shades of grey)
● R,G,B cones: chrominance (colour)
● Each sensor has its own

frequency response curve



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 66

Colour modelsColour models

 “True” image: frequency distribution at each pixel

 RGB: matches our cones
● Additive colour: CRTs use 3 electron guns
● Must still define chromaticities of R,G,B

 CMYK: subtractive colour: C<->R, M<->G, Y<->B
● Inks/pigments: newspaper, paint

 HSV: hue, saturation, value

 CIELAB: lightness, a/b chrominance:
● Absolute colour space: only depends on whitepoint
● Convert to absolute via profile: AdobeRGB, sRGB



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 77

Geometric representation: trimeshGeometric representation: trimesh

 The most common representation for the 
geometry of 3D surfaces is a triangle mesh:
● Vertex list (point cloud): (x,y,z) coordinates

 {0.2, 0., 2.7}, {0.2, -0.112, 2.7}, {0.112, -0.2, 2.7},

● Face list: indexes into vertices
 {12, 13, 14}, {13, 14, 15}, ...

 Can also use other polygons
● But triangle is a 2D simplex:

Always flat
 Faces have normal vectors



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 88

Off-line vs. real-time graphicsOff-line vs. real-time graphics

 Off-line rendering
● Render time is not very important

 Use big parallel render farms

● Photo-realism is the priority
● Raytracing, radiosity, other rendering methods

 Real-time (interactive) graphics
● Perfect photo-realism is not so important
● Frame rate is the priority: at least 60Hz
● 3D modelling, CAD, scientific visualization
● Graphics pipeline in video card or software



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 99

Off-line renderingOff-line rendering

 Raytracing:
● Cast rays from camera into scene

until either absorbed or go to infinity
 Sky sphere handles infinity

● Reflections, translucency, refraction
● Only trace rays that are needed

 Radiosity:
● Light sources emit energy
● Follow light energy as it bounces in scene
● Global illumination: not view-dependent



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1010

Real-time graphics pipelineReal-time graphics pipeline

 Process objects one at a time: local lighting

 This is all done in hardware on the graphics card

 Input: scene objects, lighting, camera
● Most of the data is the vertex list

 Output: pixels stored in the framebuffer
● Raster graphics

Vertex
processing

Clipping Rasterize Fragment
processing

Vertex
list

Pixels



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1111

Vertex processingVertex processing

 Much of the work is in transforming vertices from 
one coordinate system to another:
● Object-based coords
● Camera-based coords
● Screen-based coords

 Each transform is a matrix multiplication

 Vertex processor also computes RGB colour at 
each vertex



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1212

Kinds of coordinate transformsKinds of coordinate transforms

 The transformations done on vertices include:
● Translation: shift in (x,y,z)
● Rotation: e.g., 3 Euler angles
● Scaling: uniform or along 3 axes
● (Perspective, affine)

 3D points are projected onto 2D image plane:
● Perspective projection:

 Projection lines meet at center of projection

● Parallel projection:
 Projection lines are all parallel



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1313

Primitive assemblyPrimitive assembly

 The vertex processor is also responsible for 
assembling vertices into primitives:
● Lines/curves, triangles/polygons/surfaces

 Uses the face list to index into the vertex list

Vertex
processing

Clipping Rasterize Fragment
processing

Pixels

Vertex
list



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1414

Clipping and cullingClipping and culling

 Don't render what we can't see

 Clipping
● Remove primitives outside of

the camera's view frustrum
 Backface culling

● Remove triangles facing away from camera
● Usually cuts down # of triangles by about 50%!

 Other optimizations also possible



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1515

RasterizationRasterization

 Convert a primitive into a fragment:
● Set of pixels just for that primitive
● Each pixel has RGB colour and depth
● Interpolate vertex colours over the fragment

Vertex
processing

Clipping Rasterize Fragment
processing

Pixels

Vertex
list



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1616

Fragment processingFragment processing

 Assemble the fragments into final framebuffer

 Hidden-surface removal:
● Some fragments may occlude parts of others
● Handle transparency

Vertex
processing

Clipping Rasterize Fragment
processing

Pixels

Vertex
list



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1717

Programmer's interfaceProgrammer's interface

 A graphics API allows a program to interact with 
the graphics pipeline

 Library subroutines (see CubeView.cxx)
● Specify the scene (models)
● Specify the lighting
● Specify the camera

Application
program

API: OpenGL,
Direct3D

GPU: graphics card



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1818

Graphics API: ModelGraphics API: Model

 Geometry: vertices (0D)
● Line segments, curves (1D)
● Polygons (2D), sometimes parametric surfaces

 Material properties: colour, specularity, etc.

 Example:
glBegin(GL_TRIANGLE);

glColor3f(0.0, 1.0, 0.0);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glVertex3f(0.0, 1.0, 0.0);

glEnd();

GL_TRIANGLE_STRIP



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 1919

Graphics API: LightingGraphics API: Lighting

 Type of light:
● Ambient (uniform, everywhere)
● Directional (e.g., sunlight)
● Spotlight (cone with falloff)
● Point vs. area light

 Material properties:
● Ambient colour
● Diffuse colour
● Specular colour
● Emissive colour



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 2020

Graphics API: CameraGraphics API: Camera

 6DOF camera model:
● Position of center of projection (3DOF)
● Orientation (3DOF)

 Also: location and size of image plane

 Could also consider
modelling lens distortion



6 Feb 20076 Feb 2007CMPT370: graphics pipelineCMPT370: graphics pipeline 2121

TODOTODO

 Lab2 due tonight
● Design + implement your own OpenMP 

program
● Lab write-up

 Midterm 1 next week Thu 15Feb
● GUI, parallel
● Emphasis on lecture material
● Coding some snippets


