Transform Matrices

20 February 2007 CMPT370 Dr. Sean Ho Trinity Western University

Review last time

- Scalars, vectors, points
- Vector spaces, affine spaces (+point)
- Lines, rays, line segments
- Curves, surfaces
- Normal vectors
- Convex hull
- Linear independence
- Basis, frame (+point)

Homogeneous coordinates

We use a 4-tuple as a homogeneous representation for both points and vectors

- [$\alpha_1 \alpha_2 \alpha_3 0$]^T is a vector
- [$\beta_1 \beta_2 \beta_3 1$]^T is a point
- Depends on current coordinate frame
- Any 4-tuple [x y z w]^T maps to a point via
 - [x/w y/w z/w 1]^T
 - If w=0, the 4-tuple represents a vector

Each point in 3D maps to a line through the origin in 4D

Changing coordinate systems

Say we have a vector whose representation in one basis (e_1 , e_2 , e_3) is $v = \{\alpha_1 \ \alpha_2 \ \alpha_3\}$.

What is the representation for the same vector in a different basis, {d₁, d₂, d₃}?

Represent each old basis vec e_i in the new basis:

•
$$\mathbf{e}_1 = \mathbf{\gamma}_{11}\mathbf{d}_1 + \mathbf{\gamma}_{12}\mathbf{d}_2 + \mathbf{\gamma}_{13}\mathbf{d}_3$$

• $\mathbf{e}_2 = \mathbf{\gamma}_{21}\mathbf{d}_1 + \mathbf{\gamma}_{22}\mathbf{d}_2 + \mathbf{\gamma}_{23}\mathbf{d}_3$
• $\mathbf{e}_3 = \mathbf{\gamma}_{31}\mathbf{d}_1 + \mathbf{\gamma}_{32}\mathbf{d}_2 + \mathbf{\gamma}_{33}\mathbf{d}_3$

3x3 Transform matrix

These nine coefficients form a 3x3 vector transform matrix M:

$$M = \begin{vmatrix} \mathcal{Y}_{11} & \mathcal{Y}_{12} & \mathcal{Y}_{13} \\ \mathcal{Y}_{21} & \mathcal{Y}_{22} & \mathcal{Y}_{23} \\ \mathcal{Y}_{31} & \mathcal{Y}_{32} & \mathcal{Y}_{33} \end{vmatrix}$$

• $w = M^T v$, where

• $v = {\alpha_1 \ \alpha_2 \ \alpha_3}$ is the representation in the old basis • $w = {\beta_1 \ \beta_2 \ \beta_3}$ is the representation in the new basis

Change of frames

Something similar happens to change frames:
 Old frame is (P, e₁, e₂, e₃)
 New frame is (Q, d₁, d₂, d₃)
 Represent old frame in new basis
 12 degrees of freedom in affine transform

$$M = \begin{vmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{vmatrix}$$

Translation matrix

$$T = \begin{vmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Translate a point p by multiplying by T: p' = Tp

CMPT370: transform matrices

20 Feb 2007

7

Scaling matrix

$$S = \begin{vmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Scale a point p by multiplying by T:
 p' = Tp

Fixed point of origin (scaling away from origin)
 Reflection is via negative scale factors

CMPT370: transform matrices

Rotation matrix

$$R = \begin{vmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0\\ \sin(\theta) & \cos(\theta) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Rotate an angle theta about the z axis
Similar matrices for rotating about x, y axes
3 Euler angles
Order of operations is important!
Rotation in 3D is non-Abelian

CMPT370: transform matrices

Lab3 due this Thu 22Feb
OpenGL 3D model viewer
Mouse interaction: transl, rot, scale
Show rendering speed in polygons/sec
You may use CubeView as a base

