
Modelling, Viewing, and ProjectionModelling, Viewing, and Projection

8 March 2007
CMPT370
Dr. Sean Ho
Trinity Western University



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 22

Review last timeReview last time

 Rotations in 3D

● Euler angles, gimbal lock problem
● Virtual trackball

 2D mouse coords -> pt on hemisphere

● Axis-angle representation

 Quaternions

● Converting from axis-angle to quaternion
● Using quaternions for rotations
● Constructing a 4x4 rotation matrix

 GameDev article on quaternions

http://www.gamedev.net/reference/articles/article1095.asp


8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 33

Outline for todayOutline for today

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays
● OpenGL display lists (see RedBook ch7)

 Viewing:  (see RedBook ch3)

● Positioning the camera: model-view matrix
● Selecting a lens: projection matrix
● Clipping: setting the view volume

 See UC-Davis ECS175 graphics course

http://www.glprogramming.org/red/chapter07.html
http://www.glprogramming.org/red/chapter03.html


8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 44

Modelling polygonsModelling polygons

 Simple representation (see CubeView):

glBegin( GL_POLYGON );

glVertex3f( 0.0, 0.0, 0.0 );
glVertex3f( 1.0, 1.5, 2.2 );
glVertex3f( -2.3, 1.5, 0.0 );

glEnd();

 Problems: inefficient, unstructured

● What if we want to move a vertex to a new 
location?

v1

v2

v3



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 55

Inward/outward facing polygonsInward/outward facing polygons

 The normal vector for a polygon follows
the right-hand rule

 Specifying vertices in order (v1, v2, v3) is same as 
(v2, v3, v1) but different from (v1, v3, v2)

 When constructing a closed surface, make sure all 
your polygons face outward

 Backface culling may mean
inward-facing polygons
don't get rendered

v1

v2

v3



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 66

Vertex lists and face listsVertex lists and face lists

 Separate geometry from topology

● Vertex coords are geometry
● Connections between vertices (edges, 

polygons) are topology

 Vertex list:

 v1 = {x1, y1, z1}

 v2 = {x2, y2, z2}

 Polygon/face list:

 P1 = {v1, v2, v3}

 P2 = {v1, v4, v2}

P2

v1

v2

v3

P1

v4



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 77

Edge listsEdge lists

 If only drawing edges (wireframe):

● Many shared edges may be duplicated
● Similar to face list but for edges:

 Does not represent the polygons!

 Vertex list:

 v1 = {x1, y1, z1}

 v2 = {x2, y2, z2}

 Edge list:

 e1 = {v1, v2}

 e2 = {v1, v4}

v1

v

2

v3

v

4

e

2

e

1



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 88

OpenGL vertex arraysOpenGL vertex arrays

 Stores a vertex list in the graphics hardware
 Six types of arrays: vertices, colours, colour indices, 

normals, texture coords, edge flags

 Our vertex list in C:
 GLfloat verts[][3] = {{0.0, 0.0, 0.0}, {0.1, 0.0, 0.0}, 

...}

 Load into hardware:
 glEnableClientState( GL_VERTEX_ARRAY );
 glVertexPointer( 3, GL_FLOAT, 0, verts );

● 3: 3D vertices
● GL_FLOAT: array is of GLfloat-s
● 0: contiguous data
● verts: pointer to data



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 99

Using OpenGL vertex arraysUsing OpenGL vertex arrays

 Use glDrawElements instead of glVertex

 Polygon list references indices in the stored 
vertex array

 GLubyte cubeIndices[24] = {0,3,2,1, 2,3,7,6,
0,4,7,3, 1,2,6,5, 4,5,6,7, 0,1,5,4};

 Each group of four indices is one quad

 Draw a whole object in one function call:
 glDrawElements( GL_QUADS, 24, 

GL_UNSIGNED_BYTE, cubeIndices );



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1010

OpenGL display listsOpenGL display lists

 Take a group of OpenGL commands (e.g., 
defining an object) and store in hardware

 Can change OpenGL state, camera view, other 
objects, etc. without redefining this stored object

 Creating a display list:
 GLuint cubeDL = glGenLists(1);
 glNewList( cubeDL, GL_COMPILE );

● glBegin(); ....; glEnd();

 glEndList();

 Using a stored display list:
 glCallList( cubeDL );

See RedBook ch7

http://www.glprogramming.org/red/chapter07.html


8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1111

Outline for todayOutline for today

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays
● OpenGL display lists

 Viewing:

● Positioning the camera: model-view matrix
● Selecting a lens: projection matrix
● Clipping: setting the view volume



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1212

Positioning the camera: model-viewPositioning the camera: model-view

 The model-view matrix describes where the 
world is relative to the camera

● Initially identity matrix: camera is at center of 
world, facing in negative z direction

 Say we want to see an object placed at the origin:

● Move the camera in the +z direction, or
● Move the world frame

in the -z direction
● Both are equivalent:

glTranslatef( 0., 0., -d );



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1313

Order of transformationsOrder of transformations

 C: current model-view matrix
 M: new additional transformation,

via glMultMatrix, glTranslate, glRotate, etc.
 v: vertex to be transformed

 OpenGL applies transforms in the order: CMv

 So the last transform is applied first!
 glMatrixMode( GL_MODELVIEW );
 glLoadIdentity();
 glRotatef( 60., 0., 0., 1. );
 glTranslatef( 10., 0., 0. );
 glBegin( GL_POINTS );

● glVertex3fv( vert );



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1414

gluLookAtgluLookAt

 Handy helper function for setting up model-view
 #include <GLU.h>

 Specify eye coords, where you want to look at, 
and direction of “up” vector:

 glMatrixMode( GL_MODELVIEW );
 glLoadIdentity();

 gluLookAt( eyex, eyey, eyez,
atx, aty, atz, upx, upy, upz );



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1515

Selecting a lens: ProjectionSelecting a lens: Projection

 The projection matrix maps 3D points in the 
camera's frame to 2D points on the image plane

● Input to projection matrix is homogeneous 
coords after model-view matrix is applied

● After multiplying by projection matrix,
 Divide to ensure homogeneous coords: [x y z 1]
 Take just the (x, y) coords as coords on image plane

● Default projection matrix is the identity
 Orthographic projection onto the xy plane



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1616

Orthographic projectionOrthographic projection

 The manual way:
 glMatrixMode( GL_PROJECTION );
 glLoadIdentity();
 glMultMatrix(...);

 The easier way with glOrtho():
 glMatrixMode( GL_PROJECTION );
 glLoadIdentity();
 glOrtho( left, right,

 bottom, top, near, far );



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1717

Perspective projectionPerspective projection

 Consider a perspective projection with center of 
projection (CoP) at origin, and image plane at 
z=d: View from top: View from side:

 A point p = (x,y,z) projects to q = (xp, yp, zp=d) 
via

q=Mp ,where M=  1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 / d 0 



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1818

Specifying perspective projectionSpecifying perspective projection

 Can also do this manually with glMultMatrix()

 Or use glFrustum():
 glFrustum( left, right,

bottom, top, near, far)

 Or use gluPerspective():
 gluPerspective(

fov, aspect, near, far );

● Easier to use than glFrustum()



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 1919

Outline for todayOutline for today

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays
● OpenGL display lists

 Viewing:

● Positioning the camera: model-view matrix
● Selecting a lens: projection matrix
● Clipping: setting the view volume



8 Mar 20078 Mar 2007CMPT370: viewing and projectionCMPT370: viewing and projection 2020

TODOTODO

 Lab4: due next week Thu 15Mar

● Add a virtual trackball using quaternions


