
Lighting and ShadingLighting and Shading

13 March 2007
CMPT370
Dr. Sean Ho
Trinity Western University

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 22

Review last timeReview last time

 Modelling: vertex lists, face lists, edge lists

● OpenGL vertex arrays
● OpenGL display lists (see RedBook ch7)

 Viewing: (see RedBook ch3)

● Positioning the camera: model-view matrix
● Selecting a lens: projection matrix
● Clipping: setting the view volume

 See UC-Davis ECS175 graphics course

http://www.glprogramming.org/red/chapter07.html
http://www.glprogramming.org/red/chapter03.html

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 33

What's on for todayWhat's on for today

 Lighting and shading

● The global rendering equation
● Light-material interaction
● Kinds of light sources

 The OpenGL local illumination model

● Ambient term
● Diffuse term
● Specular term
● Specifying in OpenGL

 See RedBook ch5

http://glprogramming.com/red/chapter05.html

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 44

Shading for realismShading for realism

 Colour is part of the OpenGL state

● Specify glColor (glColor3f, glColor4b, etc.)
before adding vertex

 Red ball:
 glColor3f(1.0, 0.0, 0.0);
 glVertex3f(...); ...

 Flat-shaded:

 Not realistic!

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 55

Factors involved in shadingFactors involved in shading

 What makes the real sphere look
like this?

 Interactions between
light and material:

● Light sources
● Material properties
● Location of viewer
● Surface orientation

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 66

The rendering equationThe rendering equation

 Light originates from light sources

 Each time light strikes a surface:

● Some absorbed, some scattered

 Cannot be solved analytically in general

 Global illumination: all objects, all light sources

 OpenGL pipeline is local: one polygon at a time

I  x , x' =g  x , x'  [ x , x ' ∫  x , x' , x' ' I  x' , x' ' dx' ']
I  x , x ' : intensity from x to x'

g  x , x ' : visibility between x , x'

x , x'  : transfer emittance from x to x'

 x , x' , x' '  : scattering from x to x ' via x' '

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 77

Light – material interactionLight – material interaction

 Light striking a material is

● Partially absorbed
● Partially scattered (reflected):

 Depends on smoothness, orientation of surface

 A surface looks red because it absorbs everything
else and reflects the red component of light

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 88

Light sourcesLight sources

 General (area) light sources: must integrate light
from all points of light source: hard!

 Simple kinds of light sources:

● Ambient light: uniform light everywhere
 Models contribution of many sources

● Point source: has position and colour
 Directional light: position is infinitely far away

● Spotlight: restrict light to a cone
 Can have falloff at edges of cone

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 99

OpenGL local illumination modelOpenGL local illumination model

 Smooth: reflect concentrated in one direction

● Rough surfaces scatter light in all directions

 The OpenGL illumination model has 3 parts:
● Ambient light

● Diffuse scattering (rough)

● Specular reflection (smooth)

 Uses four vectors:
● To source (l), To viewer (v)

● Surface normal (n), Ideal reflection (r)

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1010

Ambient lightAmbient light

 Easy way to model multiple interactions between
large area light sources and many objects

● Shadowless

 Intensity and colour depends on:

● Colour of ambient
light: ka

● Reflectivity of surface
material with respect
to ambient light: Ia

 Ambient term is kaIa

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1111

Lambertian surfacesLambertian surfaces

 An perfectly specular surface reflects all incident
light in the direction of reflection

● Angle of incidence equals angle of reflection

 A perfectly diffuse (Lambertian) surface scatters
all incident light equally in all directions

● Light reflected is proportional to
cos(θI) = l * n

● Diffuse colour of surface kd also
modulates reflected light

 Diffuse term is kd Id (l * n)

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1212

ShininessShininess

 If viewer is looking along the reflection vector, we
see the specular highlight

 Phong added falloff if viewer is slightly off from
ideal reflection vector: shininess coefficient

 cos(φ) is dotproduct of
view vector v and reflection r

 Specular term is: k
s
 I

s
 (v * r)α

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1313

Putting it togetherPutting it together

 Intensity of a surface patch from our view is
I = k

a
I
a
 + k

d
I
d
 (l * n) + k

s
 I

s
 (v * r)α

● Light properties (9):
 Ambient colour Ia
 Diffuse colour Id
 Specular colour Is

● Material properties (10):
 Absorption coefficients:

● Ambient ka, diffuse kd,
specular ks

 Shininess coefficient α

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1414

Doing this in OpenGLDoing this in OpenGL

 Enable shading and select shading model

 Specify lights

 Specify material properties

 Specify geometry and normals

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1515

Selecting lighting modelSelecting lighting model

 Enable lighting (otherwise only flat-shading):
 glEnable(GL_LIGHTING);

● Also have to enable each light source:
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);
 Have at least 8 lights (GL_MAX_LIGHTS)

 Set lighting model parameters:

● Set global ambient light colour
 glLightModelif(GL_LIGHT_MODEL_AMBIENT, r, g, b)
 Other params: GL_LIGHT_MODEL_LOCAL_VIEWER,

GL_LIGHT_MODEL_TWO_SIDED

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1616

Defining lightsDefining lights

 Point source: position, colours (amb, diff, spec)
 GL float diffuse0[] = {1.0, 0.0, 0.0, 1.0}; // RGBA

 GL float ambient0[] = {1.0, 0.0, 0.0, 1.0};

 GL float specular0[] = {1.0, 0.0, 0.0, 1.0};

 Glfloat light0_pos[] = {1.0, 2.0, 3,0, 1.0}; // homogeneous

 glEnable(GL_LIGHTING);

 glEnable(GL_LIGHT0);

 glLightv(GL_LIGHT0, GL_POSITION, light0_pos);

 glLightv(GL_LIGHT0, GL_AMBIENT, ambient0);

 glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0);

 glLightv(GL_LIGHT0, GL_SPECULAR, specular0);

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1717

Directional light sourceDirectional light source

 The position of a point source is specified in
homogeneous coordinates:

● w=1.0: light is a point source
 (x,y,z) give coordinates of position

● w=0.0: light is a directional source
 (x,y,z) give vector

 Glfloat light0_pos[] = {1.0, 2.0, 3,0, 1.0}; // homogeneous

 glLightv(GL_LIGHT0, GL_POSITION, light0_pos);

 Note that light sources are geometric objects, too

● Affected by current model-view matrix

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1818

SpotlightsSpotlights

 Spotlights have:

● RGBA colour (amb, diff, spec)
● Position
● Direction
● Cutoff distance
● Attenuation exponent α

 Falloff is proportional to
cosαφ

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 1919

Material propertiesMaterial properties

 Part of the OpenGL state: specify before the
vertices/polygon to which they apply

 GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};

 GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};

 GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};

 GLfloat shine = 100.0;

 glMaterialfv(GL_FRONT, GL_AMBIENT, ambient);

 glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);

 glMaterialfv(GL_FRONT, GL_SPECULAR, specular);

 glMaterialfv(GL_FRONT, GL_SHININESS, shine);

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 2020

Front and back face materialsFront and back face materials

 Recall back-face culling: don't render faces which
point away from camera (v * n > 0)

 Two-sided lighting disables back-face culling

● Front and back faces can get different material
properties

● Use GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK in glMaterialf()

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 2121

Emissive lightEmissive light

 An extra feature OpenGL throws in is the
emissive term:

 GLfloat emission[] = 0.0, 0.3, 0.3, 1.0);

 glMaterialf(GL_FRONT, GL_EMISSION, emission);

● Extra light added to the shading equation:
 I = (ambient) + (diffuse) + (specular) + (emissive)

● Simulates glowing object
● Does not shine light on other objects

(a) ambient
(b) diffuse
(c) emissive
(d) specular

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 2222

Computing the local illuminationComputing the local illumination

 The illumination model relies on four vectors:

● To light (l): specified by the model/scene
● To viewer (v): specified by model-view matrix
● Surface normal (n)
● Reflection (r): compute from l, n

 Computing normals is not always easy

● Depends on how we represent
the surface

● OpenGL leaves this up to us
(in our application)

13 Mar 200713 Mar 2007CMPT370: shadingCMPT370: shading 2323

TODOTODO

 Lab4: due this Thu 15Mar

● Add a virtual trackball using quaternions

