
Phong Shading andPhong Shading and
Texture MappingTexture Mapping

15 March 2007
CMPT370
Dr. Sean Ho
Trinity Western University

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 22

Review last timeReview last time

 Lighting and shading

● The global rendering equation
● Light-material interaction
● Kinds of light sources

 The OpenGL local illumination model

● Ambient term
● Diffuse term
● Specular term
● Specifying in OpenGL

 See RedBook ch5

http://glprogramming.com/red/chapter05.html

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 33

What's on for todayWhat's on for today

 Shading polygons

● Flat shading
● Gouraud shading
● Phong shading

 Texture mapping

● Coordinate transforms
● Cylinder, sphere, cube maps
● Bump mapping
● Environment mapping

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 44

Computing the local illuminationComputing the local illumination

 The illumination model relies on four vectors:

● To light (l): specified by the model/scene
● To viewer (v): specified by model-view matrix
● Surface normal (n)
● Reflection (r): compute from l, n

 Computing normals is not always easy

● Depends on how we represent
the surface

● OpenGL leaves this up to us
(in our application)

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 55

Shading polygonsShading polygons

 We specify in our model for each vertex:

● Vertex coordinates
● Vertex colours
● Vertex normal

 Use lighting model to calculate vertex shades

 Smooth shading: vertex shades are interpolated
across the polygon

 glShadeModel(GL_SMOOTH);

 Flat-shading uses the colour of the first vertex:
 glShadeModel(GL_FLAT);

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 66

Calculating normalsCalculating normals

 OpenGL expects us to find the normals

 Some shapes can be done analytically:

● Sphere: normal points from centre
● No vertex normals:

flat-shaded

● With vertex normals:
smooth-shaded
 Note silhouette edge

 How to find normals for general surfaces?

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 77

Mesh shadingMesh shading

 Each polygon is flat and has a normal vector we
can find

 To calculate normal at a vertex, average the
normals of the faces surrounding that vertex:

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 88

Gouraud shadingGouraud shading

 Find vertex normals (average polygon normals)

 Apply lighting model to each vertex to get
vertex shades

 Interpolate vertex shades across polygon

● Interpolate along edges first
● Then along each scan line (done in hardware)

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 99

Gouraud shading: qualityGouraud shading: quality

 Depends on how big each polygon appears on
screen, compared to pixel size

● Fewer polygons => bigger on screen => worse

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1010

Phong shadingPhong shading

 Find vertex normals (average polygon normals)

 Interpolate vertex normals across polygon
 Interpolating vectors, not intensities!

 Apply lighting model at each pixel to get shades

● Gouraud may miss small specular highlights
 OpenGL implements Gouraud but not Phong

● Calculate lighting model at each pixel: work
 Can use programmable shaders now

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1111

Flat vs. Gouraud vs. PhongFlat vs. Gouraud vs. Phong

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1212

Texture mappingTexture mapping

 Complex objects with many varying shades:

● Could use a new polygon for every shade
● Or use an image pasted on top of the surface

 E.g., modeling the earth:

● Blue sphere is too simple
● Modeling every continent

and mountain range with
little polygons is too much

● Texture-map a picture
onto the sphere

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1313

Bump mappingBump mapping

 e.g., modeling an orange:

● Geometry is just a simple sphere
● Texture map colours, striations, etc.
● But surface is still smooth: what about small

dimples?
 Shading should change as light and view directions

change

 Bump mapping tweaks the normal vectors to
simulate dimples or bumpiness

● Silhouette still reflects underlying geometry

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1414

Kinds of mapsKinds of maps

 Texture map:

● Paste an image onto a surface

 Bump map:

● Perturbs normal vectors in lighting model to
simulate small changes in surface orientation

 Environment (reflection) map:

● Use a picture of the surrounding room/sky for
a texture map

● Simulates reflections in highly specular
surfaces

 Only texture maps are built-in to OpenGL

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1515

Texture/bump/environment mapsTexture/bump/environment maps
Texture map

Bump map Environment map

No map

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1616

Mapping: coordinate systemsMapping: coordinate systems

 Essential question for maps: how to map
coordinate systems?

● Parametric coords (u,v) describing the surface
● Texture coords

(s,t)

● World coords
(x,y,z)

● Window coords
(xs, yt)

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1717

Backward mappingBackward mapping

 For each point (x,y,z) on the surface in world
coords, we want to go backwards to find which
pixel (s,t) in the texture we should paste:

 s = s(x,y,z);
 t = t(x,y,z);

 Two-part mapping:

● First map texture onto a simple intermediate
shape
 Cylinder
 Sphere
 Cube

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1818

Cylindrical mappingCylindrical mapping

 Parametric cylinder:

 x = r cos(2πs)
 y = r sin(2πs)
 z = t/h

 Map from
● Square [0,1] x [0,1] in (s,t) texture space to
● Cylinder of radius r, height h

in (x,y,z) world coordinates

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 1919

Spherical maps, cube mapsSpherical maps, cube maps

 Parametric sphere:

 x = r cos(2πs)
 y = r sin(2πs) cos(2πt)
 z = r sin(2πs) sin(2πt)

● Bad distortions at the poles
 Cube/box mapping:

● Easy with
orthographic projection

 Both are widely used for environment maps

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 2020

Implementing bump mappingImplementing bump mapping

 Parameterized surface:
 p(u,v) = (x(u,v), y(u,v), z(u,v))

● Tangent vectors: pu = ∂p/∂u, pv = ∂p/∂v

● Normal vector: n = pu x pv

 Perturbed surface: p'(u,v) = p(u,v) + d(u,v) n(u,v)

● d(u,v) is the displacement function/map

 Perturbed normal: n' = p'u x p'v

● n' ≈ (∂d/∂u)(n x pv) + (∂d/∂v)(n x pu)

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 2121

RasterizationRasterization

 Our model is represented with mathematical
precision, but

 Ultimately we need to produce a framebuffer:
2D array of RGB values (pixels)

 The rasterization process means that we lose
some precision

● Vector graphics (e.g., Illustrator, EPS) vs.
● Raster graphics (e.g., PhotoShop, PNG)

“jaggies”

15 Mar 200715 Mar 2007CMPT370: shading, texture mapsCMPT370: shading, texture maps 2222

TODOTODO

 Lab4: due tonight

● Add a virtual trackball using quaternions

