Phong Shading and
Texture Mapping

15 March 2007

CMPT370

Dr. Sean Ho

Trinity Western University

i
TRINITY
WESTERN
W INIVERSITY

Review last time

® Lighting and shading
The global rendering equation
Light-material interaction
Kinds of light sources

® The OpenGL local illumination model
Ambient term
Diffuse term "
Specular term
Specifying in OpenGL

-{?m.ﬁ&e RedBook ch5

WESTERN _
W IHiUF_I?FIT\—" CMPT370: shading, texture maps 15 Mar 2007

http://glprogramming.com/red/chapter05.html

What's on for today

® Shading polygons
Flat shading
Gouraud shading
Phong shading

B [exture mapping
Coordinate transforms
Cylinder, sphere, cube maps
Bump mapping
Environment mapping

e

2 TRINITY

WESTERN _ _
W INNVFERSITY CMPT370: shading, texture maps 15 Mar 2007

Computing the local illumination

209

® The illumination model relies on four vectors:
To light (I): specified by the model/scene
To viewer (v): specified by model-view matrix
Surface normal (n)
Reflection (r): compute from |, n

® Computing normals is not always easy

Depends on how we represent
the surface

OpenGL leaves this up to us
(in our application)

TRINITY
WESTERN
LINIVERSITY

CMPT370: shading, texture maps 15 Mar 2007

Shading polygons

m We specify in our model for each vertex:
Vertex coordinates
Vertex colours

Vertex normal
m Use lighting model to calculate vertex shades

® Smooth shading: vertex shades are interpolated
across the polygon

¢ glShadeModel(GL_SMOQOTH);
m Flat-shading uses the colour of the first vertex:
¢ glShadeModel(GL_FLAT);

TRINITY
WESTERN
W INIVERSITY

209

CMPT370: shading, texture maps 15 Mar 2007

Calculating normals

® OpenGL expects us to find the normals
® Some shapes can be done analytically:

Sphere: normal points from centre

No vertex normals:
flat-shaded

With vertex normals:
smooth-shaded

+ Note silhouette edge
® How to find normals for general surfaces?

¢ TRINITY

WESTERN _ _
W INNVFERSITY CMPT370: shading, texture maps 15 Mar 2007 6

Mesh shading

m Each polygon is flat and has a normal vector we
can find

®m To calculate normal at a vertex, average the
normals of the faces surrounding that vertex:

‘!J? TRIMITY

\WESTERN

1 INIVERSITY CMPT370: shading, texture maps 15 Mar 2007

Gouraud shading

® Find vertex normals (average polygon normals)

m Apply lighting model to each vertex to get
vertex shades

® [nterpolate vertex shades across polygon

Interpolate along edges first
Then along each scan line (done in hardware)

2 A ﬂ
] y q
4 4
e

28 TDINITY
WESTFRN
LR TN FRYITY

CMPT370: shading, texture maps 15 Mar 2007

Gouraud shading: quality

®m Depends on how big each polygon appears on
screen, compared to pixel size

Fewer polygons => bigger on screen => worse

¢ TRINITY

WESTFRN

1IN ERCITY CMPT370: shading, texture maps 15 Mar 2007

Phong shading

® Find vertex normals (average polygon normals)
B [nterpolate vertex normals across polygon

* Interpolating vectors, not intensities!
m Apply lighting model at each pixel to get shades

Attt

Gouraud may miss small specular highlights
+ OpenGL implements Gouraud but not Phong
Calculate lighting model at each pixel: work

™" + Can use programmable shaders now
TRIMNITY
WWESTFRN

B OLINIFRSITY

CMPT370: shading, texture maps 15 Mar 2007 10

Flat vs. Gouraud vs. Phong

CMPT370: shading, texture maps 15 Mar 2007
LINIVERSITY < &

Texture mapping

B Complex objects with many varying shades:
Could use a new polygon for every shade
Or use an image pasted on top of the surface
® E.g., modeling the earth: -~ e
Blue sphere is too simple o8

Modeling every continent e U
and mountain range with L
little polygons is too much L

Texture-map a picture
onto the sphere
A0

. 2 TRINITY
WVWESTERN

W INIVERSITY CMPT370: shading, texture maps 15 Mar 2007 12

Bump mapping

® e.g., modeling an orange:
Geometry is just a simple sphere
Texture map colours, striations, etc.

But surface is still smooth: what about small
dimples?

+ Shading should change as light and view directions
change

B Bump mapping tweaks the normal vectors to
simulate dimples or bumpiness

Silhouette still reflects underlying geometry

209
TRINITY
WESTFRN

W INNVFERSITY CMPT370: shading, texture maps 15 Mar 2007 13

Kinds of maps

B [exture map:
Paste an image onto a surface
® Bump map:

Perturbs normal vectors in lighting model to
simulate small changes in surface orientation

® Environment (reflection) map:

Use a picture of the surrounding room/sky for
a texture map

Simulates reflections in highly specular
surfaces

®IMF]y texture maps are built-in to OpenGL

W IHiUF_I?FIT\—" CMPT370: shading, texture maps 15 Mar 2007 14

209

209

Texture/bump/environment maps

Texture map

Bump map Environment map

L TRINITY
WESTERN

LINIVERSITY CMPT370: shading, texture maps 15 Mar 2007

15

Mapping: coordinate systems

m Essential question for maps: how to map
coordinate systems?

Parametric coords (u,v) describing the surface

Texture coords
(s,t)

World coords
(X,Y,2)

Window coords
(X, Y)

‘!J? TRIMITY

WESTER N _ _
LRI FRSITY CMPT370: shading, texture maps 15 Mar 2007

16

Backward mapping

® For each point (x,y,z) on the surface in world
coords, we want to go backwards to find which
pixel (s,t) in the texture we should paste:

*s = s(X,Y,2);
ot = t(X,y,2);
B [Two-part mapping:
First map texture onto a simple intermediate
shape
* Cylinder
* Sphere

¢ Cube
20
TRIMNITY
VAFSTFRM

W INNVFERSITY CMPT370: shading, texture maps 15 Mar 2007

17

Cylindrical mapping

®m Parametric cylinder:
¢ X = r cos(2T1rS)

ey = r sSin(2TrS)

Square [0,1] x [0,1] in (s,t) texture space to

ez =1t/h

m Map from

Cylinder of radius r, height h
in (x,y,z) world coordinates

¢ TRINITY

WESTFRN

W INNVFERSITY CMPT370: shading, texture maps 15 Mar 2007 18

Spherical maps, cube

® Parametric sphere:
¢ X = r cos(2TTS)

¢y = r sin(2Trs) cos(2Trt)

¢z = r sin(2T1rs) sin(2T1Tt)
Bad distortions at the p
m Cube/box mapping:

. Left [Botiom| Right | To
Easy with ..

. . . Front
orthographic projection .
W
TRINITY
WESTERN _ i tu
T LNRIERSHRY o o o x i D 370: shading, texture maps, L5 Mar 2007 e

nY nnvvivroeammaonnm+t mmancac

Implementing bump mapping

B Parameterized surface:
¢ p(u,v) = (x(u,v), y(u,v), z(u,v))
Tangent vectors: p, = dp/du, p, = dp/ov
Normal vector: n = p, x p,

m Perturbed surface: p'(u,v) = p(u,v) + d(u,v) n(u,v)
d(u,v) is the displacement function/map
m Perturbed normal: n" = p’ x p’,

” n'=(add/du)(nxp,)+ (ad/ov)(nxp,)

22 TRINITY
VWESTFR M

W INIVERSITY CMPT370: shading, texture maps 15 Mar 2007 20

Rasterization

® Our model is represented with mathematical
precision, but

m Ultimately we need to produce a framebuffer:
2D array of RGB values (pixels)

® The rasterization process means that we lose
some precision

Vector graphics (e.qg., lllustrator, EPS) vs.
Raster graphics (e.g., PhotoShop, PNQG)

“jaggiesl!

¢ TRINITY

WESTFRN

1IN ERCITY CMPT370: shading, texture maps 15 Mar 2007

TODO

m Lab4: due tonight
Add a virtual trackball using quaternions

e TRINITY

“ WESTERN _ _
W INIVERSITY CMPT370: shading, texture maps 15 Mar 2007 22

