NURBS (Redbook ch12)

29 March 2007 CMPT370 Dr. Sean Ho Trinity Western University

IBiblio e-notes

Cambridge notes

Review last time

Polynomial curves and surfaces
Cubic polynomial curves:

Interpolating
Hermite
Bezier
Using Bezier evaluators in OpenGL

Bezier evaluators in OpenGL

Specify array (1D or 2D) of control points: ◆ GLfloat ctrlpoints[4][3] = { {-4.0, -4.0, 0.0}, ... Create a Bezier evaluator: (type=GL MAP1 VERTEX 3) Image glMap1f(type, u_{min}, u_{max}, stride, order, points); Enable the evaluator: • glEnable(type); Evaluate the Bezier at a particular u/v: • glEvalCoord1f((GLfloat) u); • Use this instead of glVertex(), e.g., within glBegin() GL LINE STRIP)

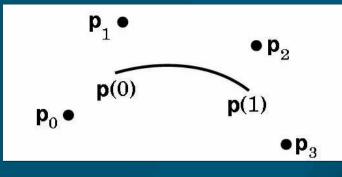
How OpenGL computes Beziers

de Casteljau's algorithm: 4 control points: • Plot a point \mathbf{u} of the way from \mathbf{p}_0 to \mathbf{p}_1 • Similarly between (p_1, p_2) , and (p_2, p_3) • Get 3 points (q_0, q_1, q_2) Plot points u of the way between $(q_0, q_1), (q_1, q_2)$ • Get 2 points (r_0, r_1) Plot a point u of the way between (r_0, r_1) This is our point on the Bezier curve CMPT370: NURBS 29

Draftsman's tool for drawing smooth curves:

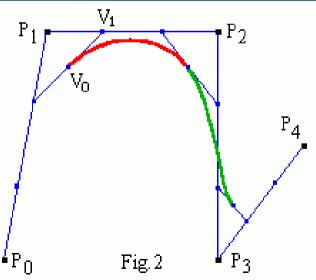
- Flexible wood/plastic strip
- Bent to pass through knots (control points)
- A spline is any sort of smooth curve that has a series of control points
 - Interpolating splines
 - Interpolating cubic spline
 - Interpolating Catmull-Rom spline
 - Cubic Bezier is a spline
 - B-splines

Cubic B-splines

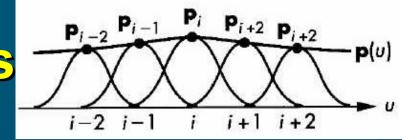


n+1 deBoor control points p₀, ..., p_n.

Make n-2 Bezier curve segments Want C² at the joins; sacrifice interpolation Derive Bezier control points (v₀, v₁, v₂, v₃) from deBoor points (p_0, p_1, p_2, p_3) : Ρ • v_1 is (1/3)-way between p_1 and p_2 Vo • v_0 is halfway between v_1 and $(1/3)p_0 + (2/3)p_1$ Cubic B-spline: order k=4 ₽∩



B-spline basis functions



- Basis functions are simple polynomials
- Region of influence for each deBoor control point is 4 Bezier segments
- Each point on the curve is affected by 4 deBoor control points
- Knots (u₀, ..., u_{n+4}) specify where the joins are in parameter space: e.g., {0.0, 0.25, 0.50, 0.75, 1.0}
- Uniform B-spline: uniform spacing of knots
- Open-spacing: duplicate end knots to get interpolation:
 - {0.0, 0.0, 0.0, 0.0, 0.25, 0.50, 0.75, 1.0, 1.0, 1.0, 1.0}

NURBS

Spline:

- Smoothish curve defined by control points
- B-spline:
 - Joined Bezier curves with C² continuity
- Non-uniform B-spline:
 - Non-uniform spacing of knots (e.g., can use multiplicity to get interpolation of endpoints)
- Rational B-spline:
 - Add weights to each control point
 - Takes advantage of perspective division hardware

Properties of NURBS

- More computationally expensive than Bezier curves/patches
- C² continuity makes shading look much better
- Local control: moving a control point only affects 4 Bezier segments
- Convex hull property: each point on the spline is within the convex hull of the four control points it's affected by
- Affine-invariant (including perspective):
 - Transforming control points = transforming curve

