
Ray TracingRay Tracing

3 April 2007
CMPT370
Dr. Sean Ho
Trinity Western University

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 22

Review last timeReview last time

 Using Bezier evaluators in OpenGL
 deCasteljau algorithm to compute Beziers
 B-splines

● C2 continuity
● Knot spacing: uniform, open, non-uniform
● NURBS

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 33

Local vs. global renderingLocal vs. global rendering

 Local rendering:
● Each object is rendered

independently
● Real-time OpenGL pipeline

 Global rendering:
● Light scatters between objects
● Approximates more of the global rendering equation
● Usually computed off-line

 Ray tracing: highlights, reflection, refraction
 Radiosity: surface scattering

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 44

Object-space vs. image-spaceObject-space vs. image-space

 OpenGL pipeline: object-space
● Render one object at a time
● Fast, easy, but doesn't model

object-object interactions
 Ray tracing: image-space

● Render one pixel at a time
● Pixel-level parallelism

 Radiosity: surface patches
● Find diffuse inter-reflections between each pair of

surface patches

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 55

Forward ray tracingForward ray tracing

 Physically-based modelling
 Each light source emits photons
 Follow photons as they bounce

around the scene and eventually to
the camera

 Problem: most photons won't
contribute to the image!
● Waste of computation

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 66

Backward ray tracingBackward ray tracing

 First step is ray casting:
● Fire rays from center of projection

through each pixel in image plane
 When ray strikes an object, compute illumination:

● Local illumination model (as in OpenGL)
● Shadow rays
● Reflection rays
● Refraction rays

 Reflection/refraction: use recursion
 Critical operations: intersections, illumination

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 77

Shadow raysShadow rays

 An optimization to speed up local illumination
 Trace a shadow ray from the surface to each light
 If the shadow ray intersects any

opaque object, then
● That light does not contribute

to the local illumination of
this surface patch

● Don't need to compute the
illumination from that light

 Often over 90% of rays cast
are shadow rays!

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 88

Reflection and refraction raysReflection and refraction rays

 Reflection ray
● Replaces specular part of local illumination model
● Compute backward reflection ray

 Refraction (transmission) ray
● Models glass/water
● Refractive index

 Recurse until either:
● Ray exits scene (no intersect)
● Contribution too dim
● Fixed recursion depth

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 99

Finding ray-surface intersectionsFinding ray-surface intersections

 Easier to work with specialized kinds of objects:
● Spheres
● Planes
● Polygons
● Generalized parametric surfaces
● Generalized implicit surfaces
● Constructive solid geometry (CSG)

 We don't want to decompose a surface into lots of little
triangles!

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 1010

Intersect ray with parametric surfaceIntersect ray with parametric surface

 Express the ray in parametric form:
● Origin: p0 = [x0, y0, z0, 1]T

● Direction: d = [xd, yd, zd, 0]T (assume normalized)

● The ray is: p0 + d t, for all t > 0.

 Express surface in parametric form:
● p(u,v), for (u,v) in some bounds

 Solve (not easy for general surfaces):
● p0 + d t = p(u,v)
● 3 equations, 3 unknowns (t,u,v)

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 1111

Intersect ray with implicit surfaceIntersect ray with implicit surface

 Express surface in implicit form:
● Let f:R3→R1 be a function on 3D-space
● The surface is the set of points p where f(p) = 0

 Solve:
● f(p0 + d t) = 0
● Solve for t
● Check that t>0 (intersection in front of ray)
● Also hard for general surfaces, but numerical

approximation algorithms exist for root-finding

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 1212

Intersect ray with sphereIntersect ray with sphere

 Express the sphere in implicit form:
● Centre: c = [xc, yc, zc, 1]T

● Radius: r
● The sphere is:

 f(x,y,z) = (x-xc)2 + (y-yc)2 + (z-zc)2 – r2 = 0
 Solve: plug in ray equations for the point (x,y,z):

● (x0 + xd t - xc)2 + (y0 + yd t - yc)2 + (z0 + zd t - zc)2 – r2 = 0
● Quadratic in t: solve using quadratic formula

 Also calculate normal vector on the sphere

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 1313

Intersect ray with quadricIntersect ray with quadric

 A quadric is any surface with an implicit form
 f(x,y,z) = 0

● Where f is a polynomial of order 2 (quadratic)
● Examples: sphere, ellipsoid, cylinder, cone, etc.

 Solving for ray-quadric intersection:
● Closed-form quadratic formula

to solve for t
 Intersecting with one quadric

faster than decomposing into
polygons and testing each polygon

3 Apr 20073 Apr 2007CMPT370: ray tracingCMPT370: ray tracing 1414

Intersect ray with polygonIntersect ray with polygon

 First intersect ray with the plane containing the
polygon
● Implicit form of the plane:

 f(x,y,z) = ax + by + cz – h = 0
● Unit normal vector: n = [a b c 0]T

● Substitute ray equations and solve for t:
 t = - (n*p0 + h) / n*d (use dot products)

 Check if intersection point lies within polygon:
● Project onto 3 planes x=0, y=0, z=0
● Check point-in-polygon in 2D

