Radiosity I

10 April 2007 CMPT370 Dr. Sean Ho Trinity Western University

WESTERN UNIVERSITY *reference:* (*J.Stewart / Queen's U*)

Review last time

Spatial data structures Applications Object-centric Bounding volumes: axis-aligned, oriented, hull • Hierarchical bounding volumes Space-subdivision Grids Octrees • k-d trees and BSP trees

What's on for today

- Radiosity: terminology
 - Assumptions
 - Solid angles
 - Radiometry
 - BRDFs
 - Albedo
 - Radiosity equation
 - Form factors

Local vs. global illumination

Local: OpenGL realtime pipeline Light/render each object individually Global: ray tracing Image space: render one pixel at a time Reflection/refraction Global: radiosity Object space: get colour for each surface patch View-independent Can then render using OpenGL Diffuse surface-to-surface interactions

Assumptions for classical radiosity

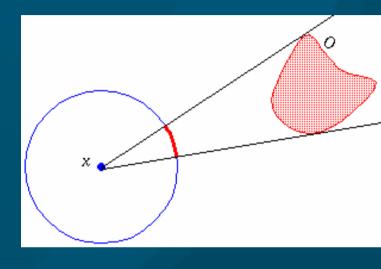
Model light transfer from one element to another as system of linear equations

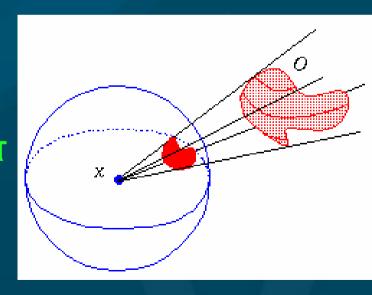
Reflection and emission are diffuse (Lambertian)

Independent of direction

All surfaces opaque

 No fog / atmospheric effects
 Radiosity is constant across each surface element

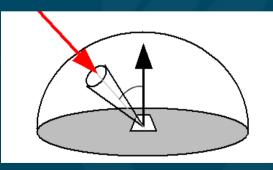

Can solve for R, G, B separately

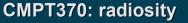


http://gameprog.it/

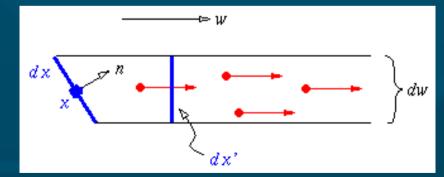
Solid angles (steradians)

In 2D: Angle subtended by an object O as viewed from x: Project object onto unit circle • Angle in radians, 0 to 2π In 3D: Solid angle subtended by an object O as viewed from x: Project object onto unit sphere • Solid angle in steradians, 0 to 4π



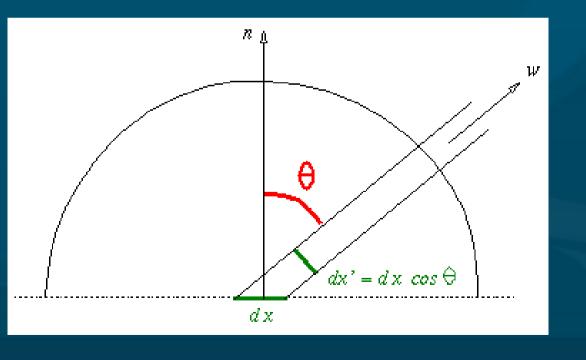


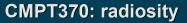
Radiometry terms


- Light energy: Q (Joules)
- Radiant power: P
 - Power = energy / time (W = J/s)
 - Rate at which light energy is transmitted
- Flux density: Φ
 - Radiant power per unit area of the surface (W/m²)
 - Irradiance: E
 - Flux density incident on surface
 - Radiosity: B
 - Flux density exitant from surface

Power at a point in a direction

- Flux density at a point x: $\Phi(x) = dP/dx$
- Radiant intensity: I
 - Power radiated by a point source, per unit solid angle (W/sr)
- Radiance L(x,ω):
 - Flux density at a point x in a direction ω (W/m²sr)

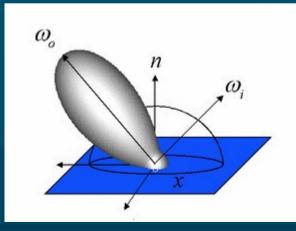

$$L(x,\omega) = \frac{d^2 P}{d \omega dx'} = \frac{d^2 P}{d \omega \cos \theta dx}$$



CMPT370: radiosity

Radiosity vs. radiance

Radiance L(x, \omega): in a direction \omega Radiosity B(x): integrate over all exit directions B(x) = \int_\Omega L(x, \omega) \cos \theta d \omega

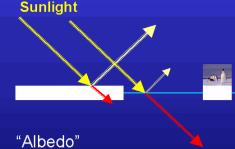


Bidirectional reflectance distribution

The bidirectional reflectance distribution (BRDF) at a point x gives the ratio of

• incoming radiance from one direction ω_i

• to outgoing flux density to another direction ω_{o} $\rho_{BD}(\omega_{i}, \omega_{o}) = \frac{L_{o}(x, \omega_{o})}{L_{i}(x, \omega_{i})\cos\theta_{i}d\omega_{i}}$



CMPT370: radiosity

10

Lambertian BRDFs: albedo

11

lce/snow reflects

We assume Lambertian surfaces Constant BRDFs (independent of direction): $\rho_{RD}(\omega_i, \omega_o) = \rho_{RD}$ • Then the radiosity B(x) and irradiance E(x) (total incoming/outgoing flux density) are proportional: $\underline{B}(x) = \iint \rho_{BD}(\omega_i, \omega_o) L_i(x, \omega_i) \cos \theta_i d \omega_i \cos \theta_o d \omega_o$ $\dots = \rho_{BD} \iint_{\Omega} L_i(x, \omega_i) \cos \theta_i d \, \omega_i \cos \theta_o d \, \omega_o$ $\dots = \rho_{BD} E(x) \int \cos \theta_o d \omega_o$ $\ldots = \pi \rho_{BD} E(x)$ The ratio $\rho = \pi \rho_{RD}$ is the albedo Albedo 03 CMPT370: radiosity 10 Apr 2007

Radiosity equation

Interaction between a surface element i and all other surface elements j:

$$A_i B_i = A_i E_i + \rho_i \sum_j F_{ji} A_j B_j$$

A_i: area of element i (known)
B_i: radiosity of element i (unknown)
E_i: irradiance (emission) of element i (given)
ρ_i: reflectance of element i (given)
F_{ji}: form factor from j to i (computable)

Form factors F_{ji}

The form factor F_{ji} is the fraction of light leaving element j that arrives at element i

- Depends on:
 - Shape of the elements i, j
 - Relative orientation of the patches
 - Distance between the patches
 - Occlusion by other patches

Can be computed from the geometry of the scene

Radiosity pipeline

Compute form factors F_{ii} between all elements

Solve radiosity equation to calculate radiosity of each element

 Very large linear system: iterative solutions
 Radiosity is view-independent
 Render final view using OpenGL
 Flat-shaded with colours coming from radiosity

14

TODO

Lab5 due this Thu 12Apr Virtual world Creative, interesting scene Lights and materials Texture map Bezier evaluator or NURBS Pick objects Final deadline for late labs: Thu 19Apr

15