Raytracing II

12 April 2007 CMPT370 Dr. Sean Ho Trinity Western University

Review last time

Radiosity: terminology Assumptions Solid angles Radiometry BRDFs Albedo Radiosity equation Form factors

Radiosity equation

Interaction between a surface element i and all other surface elements j:

$$A_i B_i = A_i E_i + \rho_i \sum_j F_{ji} A_j B_j$$

- A_i: area of element i (known)
- B: radiosity of element i (unknown)
- E_i: emissivity of element i (given)
- p: reflectance of element i (given)

F_{ii}: form factor from j to i (computable)

Radiosity pipeline

- Split geometry into elements
- Compute form factors F_{ii} between all elements
- Solve radiosity equation to calculate radiosity of each element
- Very large linear system
 Radiosity view-independent
 Render final view with OpenGL
 Flat-shaded using colours given by radiosity

Computing form factors F_{ii}

- Finding visiblity of elements j from element i
 Hemicube algorithm:
 - Render scene onto hemicube about i
 - Instead of colour, use patch id# j
 - Exploits hardware z-buffering to resolve occlusion

Substructuring

Make distinction between patches and elements: Subdivide patches into elements when needed Near lights, shadow boundaries Skip interaction of elements in same patch Compute F_{ii} from elements to other patches • Other patches find a summary F to this entire patch • Complexity: O(m n), where m: # patches • n: total # elements

Progressive solution to radiosity

 Iterative solution to global radiosity equation: A_iB_i=A_iE_i+ρ_i∑_j F_{ji}A_jB_j

 Initialize with B_i=E_i for all emitting elements, B_i=0 for all other elements

 Start with brightest element
 For all other elements, approx B_i = ρ_iB_iF_{ji}(A_i/A_i)

Shoot light from this source to scene
Do next brightest elt; iterate to convergence
Optimization: only iterate over emitting elements

Comparing radiosity + ray tracing

Kinds of light transport

- Diffuse to diffuse (done by radiosity)
- Specular to specular (done by ray tracing)
- Specular to diffuse
- Diffuse to specular

Ray tracing: view-dependent

- Specular to specular
- Light sources to diffuse
- Radiosity: view-independent
 - Diffuse to diffuse

Specular radiosity

Theoretical extension to include specularity
 Diffuse radiosity

- Lambertian surfaces: light scatters isotropically
- Only need to know F_{ii} relationship btwn patches
- Specular radiosity
 - Full BRDF $\rho(\omega_i, \omega_o)$ instead of just albedo
 - Global radiosity equation no longer linear
- Retains view independence
 - Generally computationally infeasible

Two-pass radiosity + ray tracing

Radiosity on first pass: view-independent

Enhancements to classical radiosity:

- Translucent surfaces: e.g., windows
 - Transmission of both specular and diffuse light
 - Include translucency in "window" form factor
- Reflective surfaces: e.g., mirrors
 - Create a virtual (mirror-world) environment
 - Mirror becomes a window into the reflected world
 - Use transmission techniques

Accounts for only one level of reflection

Pass 2: enhanced ray tracing

Ray tracing on second pass: view-dependent Classical ray tracing only specular-to-specular: Reflection ray Refraction ray • Diffuse local illumination Specular-to-diffuse light transport: • Diffuse illumination should integrate all incoming light over a hemisphere • Approximate using a cone about reflection ray If surface visible in cone is specular, recurse CMPT370: raytracing II 12 Apr 2007

11

Ray tracing: image-based light

- Rays that go to infinity map to sky sphere
- Get colour from surrounding image
- Often used with HDR images

Classical radiosity vs. 2-pass

CMPT370: raytracing II

Raytrace vs. radiosity vs. 2-pass

CMPT370: raytracing II

Lab5 due tonight

- Virtual world
 - Creative, interesting scene
 - Lights and materials
 - Texture map
 - Bezier evaluator or NURBS
 - Pick objects
- Final deadline for late labs: Thu 19Apr

