
§4.8-4.10, Py ch5-6: Recursion§4.8-4.10, Py ch5-6: Recursion

6 October 2008
CMPT14x
Dr. Sean Ho
Trinity Western University

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 22

Review from last time (ch4)Review from last time (ch4)
 Some debugging tips
 A fun example: ROT13

● ord(), chr(), string indexing, len()
● Stub program

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 33

Addendum: iterating a stringAddendum: iterating a string
 Iterating through a string:

for idx in range(len(myString)):
myChar = myString[idx]

● Shorthand in Python:
(can treat strings as lists of characters)

for myChar in myString:
myChar ...

● For example:
for myChar in "Hello World!":

print myChar

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 44

What's on for today (§4.8, Py What's on for today (§4.8, Py
ch5-6)ch5-6)
 Recursive functions

● Factorial example
 Call stack, backtrace

● Fibonacci example
 Abstract Data Types

● Type hierarchy
 Enumerations

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 55

RecursionRecursion
 Recursion is when a function invokes itself
 Classic example: factorial (!)

● n! = n(n-1)(n-2)(n-3) ... (3)(2)(1)
● 0! = 1

 Compute recursively:
● Inductive step: n! = n*(n-1)!
● Base case: 0! = 1

 Inductive step: assume (n-1)! is calculated
correctly; then we can find n!

 Base case is needed to tell us where to start

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 66

factorial() in Pythonfactorial() in Python
def factorial(n):

"""Calculate n!. n should be a positive integer."""
if n == 0: # base case

return 1
else: # inductive step

return n * factorial(n-1)

 Progress is made each time: factorial(n-1)
 Base case prevents infinite recursion
 What about factorial(-1)? Or factorial(2.5)?

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 77

The call stackThe call stack
 When a program is running, an area

of memory is set aside to store local
variables, the state of the program,
etc.

 When a procedure is invoked, the
calling context is saved, and a new
chunk of memory is allocated for the
procedure to use: its stack frame

 When the procedure finishes, its
frame is released and control goes
back to the calling context

 The stack pointer keeps track of what
frame is currently running

__main__

calc_volume()

math.sin()

stack
pointer

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 88

Call stack for recursive functionsCall stack for recursive functions
def factorial(n):

"""Compute the factorial of a
positive integer."""

if n == 0:
return 1

else:
return n*factorial(n-1)

 If there were any local variables,
each frame would have its own
instance of the local variables

 When an error (exception)
happens, IDLE shows a backtrace:
part of the call stack __main__

factorial(3)

factorial(2)

stack
pointer

factorial(1)

factorial(0)

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 99

Another recursive ex.: FibonacciAnother recursive ex.: Fibonacci
 Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34,...

● Each number is the sum of the two previous
def fibonacci(n):

"""Compute the n-th Fibonnaci number.
pre: n should be a positive integer.
"""
if n == 0 or n == 1: # base case

return 1
else: # inductive step

return fibonacci(n-2) + fibonacci(n-1)
● Note: very inefficient algorithm!

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 1010

Abstract Data TypesAbstract Data Types
 Recall the categorization of

● Atomic vs. Aggregate (compound) types
 Some examples of atomic data types:

● Real (float), integer (int), Boolean (bool)
● Character (if the language has such a type)

 Some examples of aggregate data types:
● Arrays, tuples, dictionaries, records/structs

 Abstract Data Type (ADT):
● Details of implementation are hidden from

user (how to represent a float in binary form?)

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 1111

M2 type hierarchy (partial)M2 type hierarchy (partial)
 Atomic types

● Scalar types
 Real types (REAL, LONGREAL)
 Ordinal types (CHAR)

● Whole number types (INTEGER, CARDINAL)
● Enumerations (§5.2.1) (BOOLEAN)
● Subranges (§5.2.2)

 Structured (aggregate) types
● Arrays (§5.3)

 Strings (§5.3.1)
● Sets (§9.2-9.6)
● Records (§9.7-9.12)

 Also can have user-defined types

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 1212

Python type hierarchy (partial)Python type hierarchy (partial)
 Atomic types

● Numbers
 Integers (int, long, bool): 5, 500000L, True
 Reals (float) (only double-precision): 5.0
 Complex numbers (complex): 5+2j

 Container (aggregate) types
● Immutable sequences

 Strings (str): "Hello"
 Tuples (tuple): (2, 5.0, "hi")

● Mutable sequences
 Lists (list): [2, 5.0, "hi"]

● Mappings
 Dictionaries (dict): {"apple": 5, "orange": 8}

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 1313

Enumeration types in M2 (also C)Enumeration types in M2 (also C)
TYPE

DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
VAR

today : DayName;
BEGIN

today := Mon;
 We could have used CARDINALs instead

(and indeed the underlying implementation does)
● But the logical semantic of today's type is a

DayName type, not a CARDINAL
 Can be thought of as Sun=0, Mon=1, Tue=2, ...
 No explicit enumeration scheme in Python

6 Oct 20086 Oct 2008CMPT14x: recursionCMPT14x: recursion 1414

Review of today (§4.8, Py ch5-6)Review of today (§4.8, Py ch5-6)
 Recursive functions

● Factorial example
 Call stack, backtrace

● Fibonacci example
 Abstract Data Types

● Type hierarchy
 Enumerations

