§5.1-5.5: Arrays
Py 10.1-10.7: Lists

8 Oct 2008

CMPT14x

Dr. Sean Ho

Trinity Western University

W
TRINITY
WESTFR N
| LININERSITY

What's on today

m Python lists vs. M2/C arrays

m Lists as function parameters

m Multidimensional arrays/lists

m Python-specific list operations
Membership (in)
Concatenate (+), repeat (%)
Delete (del), slice ([s:e])
Aliasing vs. copying lists

w TRINITY

WESTERMN

| 1LINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008

M2 type hierarchy (partial)

m Atomic types

Scalar types

+ Real types (REAL, LONGREAL)
+ Ordinal types (CHAR)

Whole number types (INTEGER, CARDINAL)
Enumerations (§5.2.1) (BOOLEAN)
Subranges (§5.2.2)

m Structured (aggregate) types

Arrays (§5.3)

+ Strings (85.3.1)
Sets (§9.2-9.6)
Records (§89.7-9.12)

»» ® Also can have user-defined types
TRIMITY
WESTERN

| 1LINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008

Python type hierarchy (partial)

m Atomic types
Numbers
+ Integers (int, long, bool): 5, 500000L, True
+ Reals (float) (only double-precision): 5.0
+ Complex numbers (complex): 5+2j
= Container (aggregate) types
Immutable sequences
+ Strings (str): "Hello"
¢ Tuples (tuple): (2, 5.0, "hi")
Mutable sequences

+ Lists (list): [2, 5.0, "hi"]
Mappings
2, iy ¢ Dictionaries (dict): {"apple": 5, "orange": 8}
WESTERN CMPT14x: Arrays and Lists 8 Oct 2008

| LININERSITY

Enumeration types in M2 / C

TYPE

DayName = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
VAR

today : DayName;
BEGIN

today := Mon;

m We could have used CARDINALSs instead
(indeed, the underlying implementation does)

But the logical semantic of today's type is a
DayName type, not a CARDINAL

® Can be thought of as Sun=0, Mon=1, Tue=2, ...
ﬁ?ﬁ'm explicit enumeration scheme in Python

WESTFRN

| LUINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008

Lists in Python

m Python doesn't have a built-in type exactly like
arrays, but it does have lists:
nelliesWages = [0.0, 25.75, 0.0, 0.0, 0.0]
nelliesWages|[1] # returns 25.75

®m Under the covers, Python often implements lists
using arrays, but lists are more powerful:

Can change length dynamically
Can store items of different type
Can delete/insert items mid-list

®m For now, we'll treat Python lists as arrays

2 TRINITY

WESTFRN

| LUINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008

Using lists

m We know one way to generate a list: rangel()
range(10) # returns [O, 1, 2, 3, 4, 5, 6, 7, 8, 9]

m Or create directly in square brackets:
myApples = ["Fuji", "Gala", "Red Delicious"]

m \We can iterate through a list:

for idx in range(len(myApples)):
print "l like", myApples[idx], "apples!”

m Even easier:

for apple in myApples:
print "l like", apple, "apples!"

Wy
TRINITY
WESTERN

| LINIERSITY CMPT14x: Arrays and Lists 8 Oct 2008

Lists as parameters

def average(vec):
"""Return the average of the vector's values.

pre: vec should have scalar values (float, int)
and not be empty.

sum =0
for elt in vec:

sum += elt
return sum / len(vec)

myList = range(9)
print average(myList)
m What happens when we pass an empty array? An
{?mlr_&ﬁﬂmic value?

WESTERN _)
LINMFRSITY CMPT14x: Arrays and Lists 8 Oct 2008

Type-checking list parameters

m Since Python is dynamically-typed, the function
definition doesn't specify what type the
parameter is, or even that it needs to be a list

Easy way out: state expected type Iin
precondition

Or do type checking in the function:

if type(vec) != type([]):
print "Need to pass this function a list!"
return

May also want to check for empty lists:
if len(vec) ==

{’?rﬁ”;ﬁg,[?, len(), etc. don't work on atomic types

WESTERN

| 1LINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008

Array parameters in M2/C/etc.

m |n statically-typed languages like M2, C, etc.,
the procedure declaration needs to specify that
the parameter is an array, and the type of its
elements:

M2:

PROCEDURE Average(myList: ARRAY of REAL) :
REAL,;

C:
float average(float* myList, unsigned int len) {
m In M2, HIGH(myList) gets the length

w B In C, length is unknown (pass in separately)

. 2 TRINITY
WESTERN

| LUINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008 10

Multidimensional arrays

® Multidimensional arrays are simply arrays of
arrays:

myMatrix =[[0.0, 0.1, 0.2, 0.3],
[1.0, 1.1, 1.2, 1.3],
[2,0, 2.1, 2.2, 2.3]]

m Accessing:
myMatrix[1][2] =
® Row-major convention:

myMatrix[1]

WP
TRINITY
VAFCTER M

| 1LINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008 11

Iterating through multidim
arrays

def matrix_average(matrix):
"""Return the average value from the 2D
matrix.

Pre: matrix must be a non-empty 2D array of
scalar values."""

sum =0
num_entries = 0
for row in range(len(matrix)):

for col in range(len(matrix[row])):
sum += matrix[row][col]
num_entries += len(matrix[row])
return sum / num_entries

»»_ m \What if rows are not all equal length?
TRINITY

VMFSTER N

| LUINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008

12

List operations (Python)

myApples = ["Fuji", "Gala", "Red Delicious"]
m Test for list membership:
iIf "Fuji" in myApples: # True
m Concatenate:
['a,'b','c']+['d, 'e']
m Repeat:
['a', 'b', 'c']*2
m Modify list entries (mutable):
myApples[1l] = "Braeburn”
m Convert a string to a list of characters:
g TRINITY list("Hello World!") # ['H', ‘e, '1Y ", "0, ...]

WESTERN _ .
| LINIERSITY CMPT14x: Arrays and Lists 8 Oct 2008 13

More list operations

m Delete an element of the list:

del myApples[1] # ["Fuji", "Golden Delicious"
1

m List slice (start:end):

myApples[0:1] # ["Fuji", "Gala"]
m Assignment is aliasing:

yourApples = myApples # points to same array
m Use a whole-list slice to copy a list:

yourApples = myApples|:]

[:] i1s shorthand for [0:-1] or
[O:len(myApples)-1]

Wy
TRINITY
WESTERN

| LINIERSITY CMPT14x: Arrays and Lists 8 Oct 2008 14

Summary of today (§5.1-5.5, Py
10.1-10.7)

m Python lists vs. M2/C arrays

m Lists as function parameters

m Multidimensional arrays/lists

m Python-specific list operations
Membership (in)
Concatenate (+), repeat (%)
Delete (del), slice ([s:e])
Aliasing vs. copying lists

w TRINITY

WESTERMN

| 1LINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008 15

Sieve of Eratosthenes

m Problem: list all the prime numbers between 2
and some given big number.

You had a homework that was similar: test if
a given number is prime, and list its factors

How did you solve that?

+ Procedure is prime() (pseudocode):
Iterate for factor in 2 .. sqrt(n):

If (n % factor == 0), then
We've found a factor!

m But this is wasteful: really only need to test

prime numbers for potential factors

2 TRINITY

WESTFRN

| LUINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008 16

Listing all primes

m \We could tackle this problem by repeatedly
calling is prime() on every number in turn:

for num in range(2, max):
iIf is_prime(num) ...
m But this could be really slow if max is big

m |s there a smarter way to eliminate non-prime
(composite) numbers?

0
TRIMNITY
VWESTER M

| 1LINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008

17

Sieve of Eratosthenes

®m The sieve works by a process of elimination: we
eliminate all the non-primes by turn:

o [211 3] s« 5] v@ 7] s s 5
11] 52 (13| 54 o5 e [17] 53 [19] 59
Syoca 123l 24 0k se ca 28 [20] S
131) 32 35 34 35 3 [37) 38 54 49
41| 42 |43 s4 o5 44 |47 48 54 sS4
51 52 |53 s4 55 s4 s 5% |59 £a
61 52 €3 K4 65 68 [67] £3 k9 %o
721 BORN 2 RENCINCORBNEN FT X
21 %2 |83 54 85 s B2 s3 [89] va
S1 £ i 4 65 ¢4 |97 €3 ca ()
Y
TRINITY
WESTERN CMPT14x: Arrays and Lists 8 Oct 2008 18

L LININVERSITY

Prime sieve: pseudocode

1) Create an array of booleans and set them all to
true at first. (true = prime)

2) Set array element 1 to false. Now 2 Is prime.

3) Set the values whose index in the array is a
multiple of the last prime found to false.

4) The next index where the array holds the value
true is the next prime.

5) Repeat steps 3 and 4 until the last prime found
IS greater than the square root of the largest
number in the array.

2 TRINITY

WESTFRN

| LUINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008 19

Prime sieve: Python code

"""Find all primes up to a given number, using
Eratosthenes' prime sieve."""

import math # sqrt
size = input("Find all primes up to: ")

Initialize: all numbers except 0, 1 are prime
primeFlags = range(size+1) # so pF[size] exists
for num in range(size+1):

primeFlags[num] = True

primeFlags[0] = False

2 primeFlags[1l] = False
TRINITY

v WESTERN _ _
| 1LINIVERSITY CMPT14x: Arrays and Lists 8 Oct 2008 20

Prime sieve: Python code (p.2)

Computation: eliminate all non-primes
for num in range(2, int(math.sqrt(size))+1):
if primeFlags[num]: # got a prime
Eliminate its multiples

for multiple in range(num**2, size+1, num):
primeFlags[multiple] = False

Output
print "Your primes, sir/madam:",
for num in range(2, size+1):
if primeFlags[num]:
print num,

) L .
j#r TRINITY http://twu.seanho.com/python/primesieve.py
! riluhd'l\;}-:l?';ﬁ'\—' CMPT14x: Arrays and Lists 8 Oct 2008 21

http://twu.seanho.com/python/primesieve.py

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

