§9.0-9.9: Sets and Records

29 Oct 2008

CMPT14x

Dr. Sean Ho

Trinity Western University

i
TRINITY
VWESTFR M
W INIVERSITY

Set operations

m A setis an unordered collection of items
B Set membership: test if an item is in the set

m Set union: A U B:
+ Anything that's in either A or B
m Set Intersection: A n B:
+ Those items which are in both A and B
m Set difference: A-B (or A\ B):
+Those in A but not in B
m Set symmetric difference: A ™ B:

+ Those in exactly one of Aor B

TRINITY
WESTERN
W INIVERSITY

A0

CMPT1l4x: sets and records 29 Oct 2008

Sets in Python

® Python has a built-in type for sets (as does M2):

Instantiate with any iterable (e.qg., a list):
bagOfApples = set(['Fuji', 'Gala’, 'Red Delicious'])
Add an apple to the bag:
bagOfApples.add(‘Rome’)
Remove an existing apple from the bag:
bagOfApples.remove('Rome')
Check if an apple is in the bag:
If '"Fuji' in bagofApples:

m See Python documentation:
e itp://docs.python.org/lib/types-set.html

u WESTERN .
W INIVERSITY CMPT14x: sets and records 29 Oct 2008

http://docs.python.org/lib/types-set.html

Python set operators

m Operators for Python sets:

Union of two sets: .union() or |

bagOfApples.union(yourApples)
bagOfApples | yourApples

Intersection of two sets: .intersection() or &
Difference of two sets: .difference() or -

Symmetric difference:
.symmetric_difference() or ©
Subset: .issubset() or <=
+ A <= B: everything in Ais alsoin B
7 rINmYSuperset: .issuperset() or >=

WESTERN _
W INIVERSITY CMPT14x: sets and records 29 Oct 2008

Bitsets

m Another way to use sets in Python is to use the
binary form of an integer to represent flags:

e.qg., file permissions
readFlag =1 << 2
writeFlag =1 <<1

execFlag =1 << 0
myPerms = readFlag | writeFlag # both read/write

If myPerms & readFlag: # have read perm

B myPerms is called a bitset: it is a compact way

” of representing a set

: TRINITY

WESTERN _
W INIVERSITY CMPT14x: sets and records 29 Oct 2008

Records

m Say we want to create a student info database:

First name
Last name
Student ID #

Year
m How do we store this?

Four separate lists:
¢ firstNames = ['Tom', 'Alan', 'Yuri', ‘Megan’, ... |
¢ studentID = [38, 28, 10, 49, ...]
Or one list of student records
A0

22 TRINITY

WESTERN _
W INIVERSITY CMPT14x: sets and records 29 Oct 2008

User-defined types

®m A record is a user-defined aggregate type:

Define a StudentRecord type as:

+ First name (string)

¢ Last name (string)

+ Student ID (integer)

¢ Year (integer between 1 and 4)

®m Then we can store the whole database in one
list, where each entry of the list has type

StudentRecord.
#? TRINITY
WESTERN CMPT14x: sets and records 29 Oct 2008

W INIVERSITY

Records in M2

m We define a record type in M2 like this:

TYPE

StudentRecord =

RECORD
firsthame : ARRAY [0 .. 255] OF CHAR;
lastname : ARRAY [0 .. 255] OF CHAR;
ID : CARDINAL;
vear : CARDINAL;

END;

m Declare and initialize a new student:

VAR
studentl : StudentRecord;

v studentl.firstname := “Joe”;
g TRIMNITY

u WESTERN _
W INIVERSITY CMPT14x: sets and records 29 Oct 2008

Records in Python: Classes

® In Python, classes are user-defined types:

+ class StudentRecord:
def init_(self):
+ self.firstName =
+ self.lastName = ""
eself.iD =0
+ self.year =0

® Instantiate a new object of type StudentRecord:

¢ studentl = StudentRecord()
¢+ studentl.firstName = 'Tom'

m studentl is an instance of the class StudentRecord

e, Ny X IS a variable of type int”

v WESTERN _
T INNVERSITY CMPT14x: sets and records 29 Oct 2008

Object-oriented programming

® Procedural paradigm: programs as lists of
actions

Focus is on the procedures (verbs)

Variables, data structures get passed into
procedures

¢ e.g.: string.upper('hello’)
m Object-oriented paradigm: collections of objects
Focus is on the data (nouns)
Messages get passed between objects

Procedures are methods belonging to objects
20

TRINITY » @.g.: 'hello'.upper()

WESTERN R
B INIERSITY CMPT14x: objects 31 Oct 2007 10

A0

Everything is an object

® |[n object-oriented programming, all data are
objects:

Variables, procedures, even libraries

® \We make things happen by passing messages
between objects read() myFile)

+ myFile.read(16) L
+ appleName.upper()
®m The object itself defines what messages it

upper()
numApples

: string
accepts: these are called its methods
e.qg., files have read(), write(), etc.
strings have upper(), len(), etc.
' TRINITY
WESTERN CMPT14x: objects 31 Oct 2007 11

W INIVERSITY

Methods and attributes

m Everything you can do with an object is
encapsulated in its object definition

Methods make up the interface to the object
®m Objects can also have attributes (variables)
®m Our fractions.py ADT example:

Methods: get _n(), get d(), add(), mult(), etc.
+ Everything you need to interact with a Fraction
Attributes: tuple (n,d)

+ Could also have two separate attributes:
num, denom

¢ TRINITY

WESTFRN

T INRERSITY CMPT14x: objects 31 Oct 2007 12

Classes and instances

m \We define (declare) object classes (types)
Attributes

Methods (interface)
¢ Constructor and destructor

®m Then we instantiate the class (declare
variables)

m e.g., fracl is a variable of type Fraction
fracl is the instance,
Fraction iIs the class

0
TRINITY
WVAFSTFR M

W INIVFRSITY CMPT14x: objects 31 Oct 2007

13

More on instantiating classes

+ class Date: sl = _
def _init_ (self): \ st s |
¢+ self.day =0 ID: 2389
+ self.month =0 bday: \
s+ self.year = 0 \
+ class StudentRecord: ?naoyrit}\? -
def init_ (self): year: 1986
+ self.firstName = ""

¢+ self.lastName = ""
¢ self.birthdate = Date()

m Creating a new StudentRecord makes a new Date:

” + bob = StudentRecord()
}.

VTRINITV + bob.birthdate.year = 1986
WESTERN

T INIVERSITY CMPT14x: objects 31 Oct 2007 14

Copy vs. alias for objects

m Objects are mutable:

¢ studentl.ID = 25
+ studentl.ID = 38

® This means assignment is just aliasing:

¢ student2 = studentl
¢+ student2.ID = 50 # affects studentl.ID

® To make a separate copy, use copy.deepcopyl):

¢ import copy
+ student2 = copy.deepcopy(studentl)

m Or create a new instance, and copy values:

¢+ student2 = StudentRecord()

o ¢ student2.ID = studentl.ID
2 TRINITY
VWESTER N

W INIVFRSITY CMPT14x: sets and records 29 Oct 2008

15

More on copy vs. alias

bob irst: Bob
; : last: Smit .
m Assignment: alias D: 2389 |, |93Y: 12
larry bday: year: 1986

¢ larry = bob
bob F1da%
m copy.copy(): shallow copy irst: Bob irst: Bob
last: Smith Iast;:slgit
+ larry = copy.copy(bob ID: 2389 ID:
y py.copy(bob) iy ShE
N : : M day: 12 4/
copy.deepcopy(): deep copy day: 12 _
+ larry = copy.deepcopy(bob) year:g2ae
bob irst: Bob larry irst: Bob
ast: Smit last: Smit
ID: 2389 day: 12 ID: 2389 day: 12
day: month: 5 bday: month: 5
g year: 1986 year: 1986
TRINITY
WESTERN CMPT14x: objects 31 Oct 2007 16

= LINIVERSITY

Using 'id’' to look at aliases

m We can check whether two names are aliases or
separate copies by using the Python built-in 'id":

¢ id(studentl) # 11563216
+ student2 = studentl # alias
¢ id(student2) # 11563216
+ student2 = copy.deepcopy(studentl) # copy
¢+ id(student?2) # 18493888
¢ TRINITY
VEWTFEM CMPT14x: sets and records 29 Oct 2008

W INIVERSITY

17

Creating a list of objects

m OQur student db is a list of StudentRecords

®m Because of aliasing, we can't use this shortcut:

¢ student = StudentRecord()
¢ studentDB = [student] * 35

A list of 35 aliases to the same object!

m Use a for loop to create separate objects:

+ studentDB = [0] * 35
+ for idx in range(len(studentDB)):
studentDB[idx] = StudentRecord()

i
TRINITY
VWESTFR M

W INIVERSITY CMPT14x: sets and records 29 Oct 2008

18

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

