
§9.0-9.9: Sets and Records§9.0-9.9: Sets and Records

29 Oct 2008
CMPT14x
Dr. Sean Ho
Trinity Western University

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 22

Set operationsSet operations

 A set is an unordered collection of items

 Set membership: test if an item is in the set

 Set union: A ∪ B:
 Anything that's in either A or B

 Set intersection: A ∩ B:
 Those items which are in both A and B

 Set difference: A – B (or A \ B):
 Those in A but not in B

 Set symmetric difference: A ^ B:
 Those in exactly one of A or B

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 33

Sets in PythonSets in Python

 Python has a built-in type for sets (as does M2):

● Instantiate with any iterable (e.g., a list):
bagOfApples = set(['Fuji', 'Gala', 'Red Delicious'])

● Add an apple to the bag:
bagOfApples.add('Rome')

● Remove an existing apple from the bag:
bagOfApples.remove('Rome')

● Check if an apple is in the bag:
if 'Fuji' in bagofApples:

 See Python documentation:
http://docs.python.org/lib/types-set.html

http://docs.python.org/lib/types-set.html

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 44

Python set operatorsPython set operators

 Operators for Python sets:

● Union of two sets: .union() or |
bagOfApples.union(yourApples)

bagOfApples | yourApples

● Intersection of two sets: .intersection() or &
● Difference of two sets: .difference() or –
● Symmetric difference:

.symmetric_difference() or ^
● Subset: .issubset() or <=

 A <= B: everything in A is also in B

● Superset: .issuperset() or >=

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 55

BitsetsBitsets

 Another way to use sets in Python is to use the
binary form of an integer to represent flags:

● e.g., file permissions
readFlag = 1 << 2

writeFlag = 1 << 1

execFlag = 1 << 0

myPerms = readFlag | writeFlag # both read/write

if myPerms & readFlag: # have read perm

 myPerms is called a bitset: it is a compact way
of representing a set

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 66

RecordsRecords

 Say we want to create a student info database:
● First name

● Last name

● Student ID #

● Year

 How do we store this?

● Four separate lists:
 firstNames = ['Tom', 'Alan', 'Yuri', 'Megan', ...]
 studentID = [38, 28, 10, 49, ...]

● Or one list of student records

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 77

User-defined typesUser-defined types

 A record is a user-defined aggregate type:

● Define a StudentRecord type as:
 First name (string)
 Last name (string)
 Student ID (integer)
 Year (integer between 1 and 4)

 Then we can store the whole database in one
list, where each entry of the list has type
StudentRecord.

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 88

Records in M2Records in M2

 We define a record type in M2 like this:

TYPE
StudentRecord =

RECORD
firstname : ARRAY [0 .. 255] OF CHAR;
lastname : ARRAY [0 .. 255] OF CHAR;
ID : CARDINAL;
year : CARDINAL;

END;

 Declare and initialize a new student:

VAR
student1 : StudentRecord;

student1.firstname := “Joe”;

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 99

Records in Python: ClassesRecords in Python: Classes

 In Python, classes are user-defined types:
 class StudentRecord:

● def __init__(self):
 self.firstName = ""
 self.lastName = ""
 self.ID = 0
 self.year = 0

 Instantiate a new object of type StudentRecord:
 student1 = StudentRecord()
 student1.firstName = 'Tom'

 student1 is an instance of the class StudentRecord

● “x is a variable of type int”

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1010

Object-oriented programmingObject-oriented programming

 Procedural paradigm: programs as lists of
actions

● Focus is on the procedures (verbs)
● Variables, data structures get passed into

procedures
 e.g.: string.upper('hello')

 Object-oriented paradigm: collections of objects

● Focus is on the data (nouns)
● Messages get passed between objects
● Procedures are methods belonging to objects

 e.g.: 'hello'.upper()

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1111

Everything is an objectEverything is an object

 In object-oriented programming, all data are
objects:

● Variables, procedures, even libraries

 We make things happen by passing messages
between objects

 myFile.read(16)
 appleName.upper()

 The object itself defines what messages it
accepts: these are called its methods

● e.g., files have read(), write(), etc.
strings have upper(), len(), etc.

main
program

myFile

numApples

upper()

file

read()

string

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1212

Methods and attributesMethods and attributes

 Everything you can do with an object is
encapsulated in its object definition

● Methods make up the interface to the object

 Objects can also have attributes (variables)

 Our fractions.py ADT example:

● Methods: get_n(), get_d(), add(), mult(), etc.
 Everything you need to interact with a Fraction

● Attributes: tuple (n,d)
 Could also have two separate attributes:

num, denom

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1313

Classes and instancesClasses and instances

 We define (declare) object classes (types)

● Attributes
● Methods (interface)

 Constructor and destructor

 Then we instantiate the class (declare
variables)

 e.g., frac1 is a variable of type Fraction

● frac1 is the instance,
● Fraction is the class

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1414

More on instantiating classesMore on instantiating classes

 class Date:
● def __init__(self):

 self.day = 0
 self.month = 0
 self.year = 0

 class StudentRecord:
● def __init__(self):

 self.firstName = ""
 self.lastName = ""
 self.birthdate = Date()

 Creating a new StudentRecord makes a new Date:
 bob = StudentRecord()
 bob.birthdate.year = 1986

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 1515

Copy vs. alias for objectsCopy vs. alias for objects

 Objects are mutable:
 student1.ID = 25

 student1.ID = 38

 This means assignment is just aliasing:
 student2 = student1

 student2.ID = 50 # affects student1.ID

 To make a separate copy, use copy.deepcopy():
 import copy

 student2 = copy.deepcopy(student1)

 Or create a new instance, and copy values:
 student2 = StudentRecord()

 student2.ID = student1.ID

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1616

 Assignment: alias
 larry = bob

More on copy vs. aliasMore on copy vs. alias
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob
first: Bob
last: Smith
ID: 2389
bday:

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob larry
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

 copy.copy(): shallow copy
 larry = copy.copy(bob)

 copy.deepcopy(): deep copy
 larry = copy.deepcopy(bob)

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 1717

Using 'id' to look at aliasesUsing 'id' to look at aliases

 We can check whether two names are aliases or
separate copies by using the Python built-in 'id':

 id(student1) # 11563216

 student2 = student1 # alias

 id(student2) # 11563216

 student2 = copy.deepcopy(student1) # copy

 id(student2) # 18493888

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 1818

Creating a list of objectsCreating a list of objects

 Our student db is a list of StudentRecords

 Because of aliasing, we can't use this shortcut:
 student = StudentRecord()
 studentDB = [student] * 35

● A list of 35 aliases to the same object!

 Use a for loop to create separate objects:
 studentDB = [0] * 35
 for idx in range(len(studentDB)):

● studentDB[idx] = StudentRecord()

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

