
§9.0-9.9: Sets and Records§9.0-9.9: Sets and Records

29 Oct 2008
CMPT14x
Dr. Sean Ho
Trinity Western University

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 22

Set operationsSet operations

 A set is an unordered collection of items

 Set membership: test if an item is in the set

 Set union: A ∪ B:
 Anything that's in either A or B

 Set intersection: A ∩ B:
 Those items which are in both A and B

 Set difference: A – B (or A \ B):
 Those in A but not in B

 Set symmetric difference: A ^ B:
 Those in exactly one of A or B

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 33

Sets in PythonSets in Python

 Python has a built-in type for sets (as does M2):

● Instantiate with any iterable (e.g., a list):
bagOfApples = set(['Fuji', 'Gala', 'Red Delicious'])

● Add an apple to the bag:
bagOfApples.add('Rome')

● Remove an existing apple from the bag:
bagOfApples.remove('Rome')

● Check if an apple is in the bag:
if 'Fuji' in bagofApples:

 See Python documentation:
http://docs.python.org/lib/types-set.html

http://docs.python.org/lib/types-set.html

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 44

Python set operatorsPython set operators

 Operators for Python sets:

● Union of two sets: .union() or |
bagOfApples.union(yourApples)

bagOfApples | yourApples

● Intersection of two sets: .intersection() or &
● Difference of two sets: .difference() or –
● Symmetric difference:

.symmetric_difference() or ^
● Subset: .issubset() or <=

 A <= B: everything in A is also in B

● Superset: .issuperset() or >=

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 55

BitsetsBitsets

 Another way to use sets in Python is to use the
binary form of an integer to represent flags:

● e.g., file permissions
readFlag = 1 << 2

writeFlag = 1 << 1

execFlag = 1 << 0

myPerms = readFlag | writeFlag # both read/write

if myPerms & readFlag: # have read perm

 myPerms is called a bitset: it is a compact way
of representing a set

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 66

RecordsRecords

 Say we want to create a student info database:
● First name

● Last name

● Student ID #

● Year

 How do we store this?

● Four separate lists:
 firstNames = ['Tom', 'Alan', 'Yuri', 'Megan', ...]
 studentID = [38, 28, 10, 49, ...]

● Or one list of student records

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 77

User-defined typesUser-defined types

 A record is a user-defined aggregate type:

● Define a StudentRecord type as:
 First name (string)
 Last name (string)
 Student ID (integer)
 Year (integer between 1 and 4)

 Then we can store the whole database in one
list, where each entry of the list has type
StudentRecord.

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 88

Records in M2Records in M2

 We define a record type in M2 like this:

TYPE
StudentRecord =

RECORD
firstname : ARRAY [0 .. 255] OF CHAR;
lastname : ARRAY [0 .. 255] OF CHAR;
ID : CARDINAL;
year : CARDINAL;

END;

 Declare and initialize a new student:

VAR
student1 : StudentRecord;

student1.firstname := “Joe”;

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 99

Records in Python: ClassesRecords in Python: Classes

 In Python, classes are user-defined types:
 class StudentRecord:

● def __init__(self):
 self.firstName = ""
 self.lastName = ""
 self.ID = 0
 self.year = 0

 Instantiate a new object of type StudentRecord:
 student1 = StudentRecord()
 student1.firstName = 'Tom'

 student1 is an instance of the class StudentRecord

● “x is a variable of type int”

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1010

Object-oriented programmingObject-oriented programming

 Procedural paradigm: programs as lists of
actions

● Focus is on the procedures (verbs)
● Variables, data structures get passed into

procedures
 e.g.: string.upper('hello')

 Object-oriented paradigm: collections of objects

● Focus is on the data (nouns)
● Messages get passed between objects
● Procedures are methods belonging to objects

 e.g.: 'hello'.upper()

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1111

Everything is an objectEverything is an object

 In object-oriented programming, all data are
objects:

● Variables, procedures, even libraries

 We make things happen by passing messages
between objects

 myFile.read(16)
 appleName.upper()

 The object itself defines what messages it
accepts: these are called its methods

● e.g., files have read(), write(), etc.
strings have upper(), len(), etc.

main
program

myFile

numApples

upper()

file

read()

string

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1212

Methods and attributesMethods and attributes

 Everything you can do with an object is
encapsulated in its object definition

● Methods make up the interface to the object

 Objects can also have attributes (variables)

 Our fractions.py ADT example:

● Methods: get_n(), get_d(), add(), mult(), etc.
 Everything you need to interact with a Fraction

● Attributes: tuple (n,d)
 Could also have two separate attributes:

num, denom

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1313

Classes and instancesClasses and instances

 We define (declare) object classes (types)

● Attributes
● Methods (interface)

 Constructor and destructor

 Then we instantiate the class (declare
variables)

 e.g., frac1 is a variable of type Fraction

● frac1 is the instance,
● Fraction is the class

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1414

More on instantiating classesMore on instantiating classes

 class Date:
● def __init__(self):

 self.day = 0
 self.month = 0
 self.year = 0

 class StudentRecord:
● def __init__(self):

 self.firstName = ""
 self.lastName = ""
 self.birthdate = Date()

 Creating a new StudentRecord makes a new Date:
 bob = StudentRecord()
 bob.birthdate.year = 1986

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 1515

Copy vs. alias for objectsCopy vs. alias for objects

 Objects are mutable:
 student1.ID = 25

 student1.ID = 38

 This means assignment is just aliasing:
 student2 = student1

 student2.ID = 50 # affects student1.ID

 To make a separate copy, use copy.deepcopy():
 import copy

 student2 = copy.deepcopy(student1)

 Or create a new instance, and copy values:
 student2 = StudentRecord()

 student2.ID = student1.ID

31 Oct 200731 Oct 2007CMPT14x: objectsCMPT14x: objects 1616

 Assignment: alias
 larry = bob

More on copy vs. aliasMore on copy vs. alias
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob
first: Bob
last: Smith
ID: 2389
bday:

larry

first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

bob larry
first: Bob
last: Smith
ID: 2389
bday:

day: 12
month: 5
year: 1986

 copy.copy(): shallow copy
 larry = copy.copy(bob)

 copy.deepcopy(): deep copy
 larry = copy.deepcopy(bob)

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 1717

Using 'id' to look at aliasesUsing 'id' to look at aliases

 We can check whether two names are aliases or
separate copies by using the Python built-in 'id':

 id(student1) # 11563216

 student2 = student1 # alias

 id(student2) # 11563216

 student2 = copy.deepcopy(student1) # copy

 id(student2) # 18493888

29 Oct 200829 Oct 2008CMPT14x: sets and recordsCMPT14x: sets and records 1818

Creating a list of objectsCreating a list of objects

 Our student db is a list of StudentRecords

 Because of aliasing, we can't use this shortcut:
 student = StudentRecord()
 studentDB = [student] * 35

● A list of 35 aliases to the same object!

 Use a for loop to create separate objects:
 studentDB = [0] * 35
 for idx in range(len(studentDB)):

● studentDB[idx] = StudentRecord()

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

