
ch8: Polymorphismch8: Polymorphism

30 Jan 2008
CMPT166
Dr. Sean Ho
Trinity Western University

30 Jan 200830 Jan 2008CMPT166: polymorphismCMPT166: polymorphism 22

Review last timeReview last time

 Inheritance for software reusability

● “has a” vs. “is a kind of”

 Subclass/superclass constructors

● super()

 Subclass/superclass references

● Downcasting

Employee

Staff

5 Feb 20075 Feb 2007CMPT167: ch6: methodsCMPT167: ch6: methods 33

Quiz 1 (10 min)Quiz 1 (10 min)

 Explain what the JDK and JRE are and contrast them.

 Explain what an applet is.

 How are comments done in Java? (both ways)

 Each box in a UML class diagram has three sections.
What are they?

 What is method overloading?

 Write a complete command-line Java program that
prints “Hello World!”.

● Doc-comments not necessary

5 Feb 20075 Feb 2007CMPT167: ch6: methodsCMPT167: ch6: methods 44

Quiz 1: answers #1-3Quiz 1: answers #1-3

 Explain what the JDK and JRE are and contrast them.
[4]

● Java Development Kit: compiler and runtime

● Java Runtime Environment: just the VM

 Explain what an applet is. [2]

● Small program to be run within a webpage

 How are comments done in Java? [2]

● /* C-style */ and // double-slashes

5 Feb 20075 Feb 2007CMPT167: ch6: methodsCMPT167: ch6: methods 55

Quiz 1: answers #4-5Quiz 1: answers #4-5

 Each box in a UML class diagram has three sections.
What are they? [3]

● Class name, attributes (variables), methods

 What is method overloading? [3]

● Different copies/versions of a method, depending
on the type of the arguments

5 Feb 20075 Feb 2007CMPT167: ch6: methodsCMPT167: ch6: methods 66

Quiz 1: answers #6Quiz 1: answers #6

 Write a complete command-line Java program that
prints “Hello World!”. [6]

public class HelloWorld {

public static void main(String args[]) {
System.out.println(“Hello, World!”);

}
}

30 Jan 200830 Jan 2008CMPT166: polymorphismCMPT166: polymorphism 77

What's on for todayWhat's on for today

 Copy constructors

 Type-wrapper classes for the primitive types

 Polymorphism

● Dynamic method binding

● final keyword for classes and methods

● Abstract and concrete classes
 abstract keyword for classes and methods

 Interfaces

● vs. abstract superclasses

30 Jan 200830 Jan 2008CMPT166: polymorphismCMPT166: polymorphism 88

Copy constructorsCopy constructors

 Just like in Python, names referring to object instances
are references (aliases) to the object

 Student bob = new Student(“Bob”, 1234);
 Student sally = bob; // alias

 It is good habit to add a copy constructor that copies
the contents of an existing instance of the same class:

 public class Student {
public Student(Student orig) {

this.name = orig.name; // what if orig is null?
this.ID = orig.ID;
....

 Student sally = new Student(bob) ;

30 Jan 200830 Jan 2008CMPT166: polymorphismCMPT166: polymorphism 99

Primitive type-wrapper classesPrimitive type-wrapper classes

 Eight primitive types in Java

● Primitives are not really objects

 Type-wrapper classes for each of the eight:

● Character, Byte, Integer, Boolean, etc.

● Enable us to represent primitives as Object

● Can then process them polymorphically

 Type-wrapper classes declared final

● Many methods declared static
 e.g., Integer.parseInt(String)

30 Jan 200830 Jan 2008CMPT166: polymorphismCMPT166: polymorphism 1010

PolymorphismPolymorphism

 Think carefully about class hierarchy in program
design

 Write programs/algorithms to operate on superclass
objects

● As generic as possible

 Instances of subclasses can be operated on by the
algorithms without need for modification

 Dynamic method binding:

● Java chooses correct method (e.g., toString()) from
subclass

Point

Dot

30 Jan 200830 Jan 2008CMPT166: polymorphismCMPT166: polymorphism 1111

final: methods/classesfinal: methods/classes

 We've seen final on variables: set as constant

 final on a method prevents subclasses from overriding

 final on a class means it cannot be extended

● (Other classes cannot inherit from it)

