
§19.1: Multi-threading§19.1: Multi-threading

19 Mar 2008
CMPT166
Dr. Sean Ho
Trinity Western University

19 Mar 200819 Mar 2008CMPT166: multithreadingCMPT166: multithreading 22

MultithreadingMultithreading

 Concurrency is running multiple tasks at the same
time

● Downloading a file, watching a movie, checking
email

● One server talking to multiple clients

 Threads are individual tasks (objects) that may run
concurrently

● Executor (master) thread starts and coordinates
worker threads

 Multithreading is built-in to Java ≥1.5

19 Mar 200819 Mar 2008CMPT166: multithreadingCMPT166: multithreading 33

Thread state diagramThread state diagram

 Threads can be in one of four states:

● New: not yet initialized

● Runnable: executing its task

● Waiting: blocked waiting for
another thread

● Timed waiting: blocked for a fixed
time

● Terminated

new

runnable

waiting timed

terminate

19 Mar 200819 Mar 2008CMPT166: multithreadingCMPT166: multithreading 44

Task schedulingTask scheduling

 The API allows a program to create multiple threads

 But how many threads can run simultaneously
depends on how many physical processors you have

● e.g., dual-core, quad-core SMP

 The scheduler assigns runnable threads to processors

● Done by the operating system, not the Java VM

● If more threads than processors, scheduler may
preempt running threads to allow others to run

● Each thread has a priority (“nice” value)
 Lower priority threads might get starved

19 Mar 200819 Mar 2008CMPT166: multithreadingCMPT166: multithreading 55

Creating a thread object in Java 1.5Creating a thread object in Java 1.5

 Class design:

● Each thread is a separate object

● Executor (master thread) is another object
 Created from main()

 The thread objects should implement the interface
Runnable (java.lang):

● Define (override) the method: public void run()

● Can use utility methods in class Thread (java.lang)
 Thread.sleep(100); // timed wait for 100ms

19 Mar 200819 Mar 2008CMPT166: multithreadingCMPT166: multithreading 66

Multithreading keeps GUI responsiveMultithreading keeps GUI responsive

 If an event handler (ActionListener) takes a long time
to run, the whole GUI is blocked waiting for it

● Window doesn't even close!

 For long-running callbacks, spawn a separate thread

 Inner (nested) class has access to all the private
instance variables: widgets, graphics context, etc.

public void ActionPerformed() {
Packer packerThread = new Packer(); // new thread
packerThread.start();

}

private class Packer extends Thread { ...

19 Mar 200819 Mar 2008CMPT166: multithreadingCMPT166: multithreading 77

Example: PrintTaskExample: PrintTask

import java.util.Random;

class PrintTask implements Runnable {

private int sleepTime;
private String name;

private static Random gen = new Random();

public PrintTask(String name) {

this.name = name;
this.sleepTime = gen.nextInt(5000);

}

public void run() {

System.out.println(name + “: good night!”);
Thread.sleep(sleepTime);
System.out.println(name + “: good morning!”);

}

}

19 Mar 200819 Mar 2008CMPT166: multithreadingCMPT166: multithreading 88

Managing threads in Java 1.5Managing threads in Java 1.5

 The executor object implements interface
ExecutorService (java.util.concurrent):

● Defines method: public void execute()

 The class Executors (java.util.concurrent) provides
static methods to create executors:

 Executors.newFixedThreadPool(3);

● Creates a new ExecutorService object that can run
up to three threads simultaneously

● If more than three threads are to be executed, the
ExecutorService object queues them up

19 Mar 200819 Mar 2008CMPT166: multithreadingCMPT166: multithreading 99

Example: RunnableTesterExample: RunnableTester

import java.util.concurrent.*;

public class RunnableTester {

public static void main(String args[]) {
PrintTask task1 = new PrintTask(“Thread 1”);
PrintTask task2 = new PrintTask(“Thread 2”);
ExecutorService master =

Executors.newFixedThreadPool(3);
master.execute(task1);
master.execute(task2);
master.shutdown();

}

}

 Master fires up worker threads, then quits

 Worker threads continue running afterward

