§19.1: Multi-threading

19 Mar 2008
CMPT166

Dr. Sean Ho
Trinity Western University

¢ TRINITY

VWESTFR M
W INIVERSITY



Multithreading

®m Concurrency is running multiple tasks at the same
time
Downloading a file, watching a movie, checking
email
One server talking to multiple clients

® Threads are individual tasks (objects) that may run
concurrently

Executor (master) thread starts and coordinates
worker threads

® Multithreading is built-in to Java 21.5

¢ TRINITY

WESTFRN

W INIVERSITY CMPT166: multithreading 19 Mar 2008



Thread state diagram

B Threads can be in one of four states:

New: not yet initialized
Runnable: executing its task

Waiting: blocked waiting for
another thread

Timed waiting: blocked for a fixed
time
Terminated

¢ TRINITY

WESTERN T
W INIVERSITY CMPT166: multithreading 19 Mar 2008 3



Task scheduling

® The API allows a program to create multiple threads

® But how many threads can run simultaneously
depends on how many physical processors you have

e.g., dual-core, quad-core SMP
® The scheduler assigns runnable threads to processors
Done by the operating system, not the Java VM

If more threads than processors, scheduler may
preempt running threads to allow others to run

Each thread has a priority ("nice” value)

Lower priority threads might get starved

¢ TRINITY

WESTFRN

1IN ERCITY CMPT166: multithreading 19 Mar 2008



Creating a thread object in Java 1.5

m Class design:
Each thread is a separate object

Executor (master thread) is another object
+ Created from main()

® The thread objects should implement the interface
Runnable (java.lang):

Define (override) the method: public void run()

Can use utility methods in class Thread (java.lang)
¢ Thread.sleep( 100 ); // timed wait for 100ms

e
TRINITY
VAFSTFRM

W INIVERSITY CMPT166: multithreading 19 Mar 2008



Multithreading keeps GUI responsive

® |f an event handler (ActionListener) takes a long time
to run, the whole GUI is blocked waiting for it

Window doesn't even close!
® For long-running callbacks, spawn a separate thread

® Inner (nested) class has access to all the private
iInstance variables: widgets, graphics context, etc.

public void ActionPerformed() {

Packer packerThread = new Packer(); // new thread
packerThread.start();

}

private class Packer extends Thread { ...

e
TRINITY
VAFSTFRM

W INIVERSITY CMPT166: multithreading 19 Mar 2008



Example: PrintTask

import java.util.Random;
class PrintTask implements Runnable {

private int sleepTime;

private String name;

private static Random gen = new Random();
public PrintTask( String name ) {

this.name = name;
this.sleepTime = gen.nextint( 5000 );

}
public void run() {

System.out.printin( name + “: good night!” );
Thread.sleep( sleepTime );
System.out.printin( name + “: good morning!” );

209 )
TRINITY

WESTFRN

. INIVERSITY CMPT166: multithreading 19 Mar 2008



Managing threads in Java 1.5

B The executor object implements interface
ExecutorService (java.util.concurrent):

Defines method: public void execute()

® The class Executors (java.util.concurrent) provides
static methods to create executors:

+ Executors.newFixedThreadPool( 3 );

Creates a new ExecutorService object that can run
up to three threads simultaneously

If more than three threads are to be executed, the
ExecutorService object queues them up

e
TRINITY
VAFSTFRM

W INIVERSITY CMPT166: multithreading 19 Mar 2008



Example: RunnableTester

import java.util.concurrent.”;
public class RunnableTester {

public static void main( String args[] ) {

PrintTask task1 = new PrintTask( “Thread 1” );
PrintTask task2 = new PrintTask( “Thread 2” );

ExecutorService master =
Executors.newFixedThreadPool( 3 );

master.execute( task1 );
master.execute( task2 );
master.shutdown();

}
m Master fires up worker threads, then quits

m Worker threads continue running afterward

¢ TRINITY

WESTFRN

W INIVERSITY CMPT166: multithreading 19 Mar 2008



